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1. INTRODUCTION

Correct identification of a probability distribution is essential in many areas of para-
metric statistics, from the modelling of probability distributions to the regression modelling
(assuming a dependent variable distribution), multivariate statistics, extreme-value analy-
sis or time series analysis. The assumption about distribution form is crucial for parametric
statistics, the correct or at least suitable choice of distribution allows a wide range of paramet-
ric procedures to be applied; in case of inappropriate choice, the results might be misleading
or even incorrect. To test such the assumption, a large spectrum of statistical goodness-of-fit
tests is available. For the general information on the sample, empirical distribution (histogram
of data or nonparametric kernel density estimate) can be plotted. Sample characteristics of
the location, variability, shape and concentration also can be evaluated. The typical sample
characteristics are (raw, centred or standardised) product moments: mean, sample variance,
coefficient of skewness and coefficient of kurtosis. Theoretical and sample moments are used
not only to describe the distribution but also in the choice of suitable distribution to model
the data or in inferential statistics. For example, if the normal distribution of data is assumed,
the absolute value of the sample coefficient of skewness is supposed to be small, and the co-
efficient of kurtosis close to three. A frequently used test of normality Jarque–Bera compares
theoretical and sample coefficients of skewness and kurtosis. The moment matching method
can be applied to estimate parameters, the equations of theoretical and sample moments are
solved explicitly or numerically with respect to the unknown parameters.

In the definition of the coefficient of skewness, a finite third raw moment is needed
and for a finite value of the coefficient of kurtosis, the finite fourth raw moment is required.
Moreover, the sample coefficients of skewness and kurtosis are strongly dependent on the
sample size and the presence of outliers in the data. With higher sample product moments,
the impact of outliers becomes more substantial. If the sample is drawn from long- or heavy-
tailed distributions, we expect multiple outliers in the data and the use of more robust
methods is essential.

We analyse data of this type in many fields of applications. For this reason, more robust
characteristics and its estimates can be preferred to describe the distribution. There are
various robust characteristics whose estimates are based on sample quantiles, which are more
robust than sample product moments. Robust quantile characteristics of the distribution
shape were presented, e.g., by [5], [10], [17] and [9], those of tail heaviness being dealt with
by [7], [19] and many others. Hosking in [11] defined L-moments as a linear combination of
order statistics, a robust alternative to product moments (robust moment characteristics).
According to [11], [12], [14], [2] and other authors, estimates of L-moments are more reliable
than those of product moments. TL-moments, defined as a trimmed linear combination of
order statistics, are even more robust than L-moments. They were applied by [8] to describe
the probability distribution.

The present article is focused on the estimation of the distribution shape and tail heav-
iness using robust moments and quantile characteristics. We treat L- and TL-moments in
comparison with product moments and robust quantile characteristics. In this paper, we con-
sider random samples from both symmetric (Student, normal, and Laplace) and asymmetric
(gamma and beta) probability distributions. The latter ones being flexible, a different com-
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bination of their parameters allows us to obtain different shapes of the distribution, including
asymmetric distributions. The aim of the article is to compare estimated characteristics (bias
and both standard and mean squared errors) of the shape and tail heaviness characteristics of
distributions depending on the distribution and size of the random sample, employing Monte
Carlo simulations. The calculation was performed in the program R ([20]), using predefined
and author-written functions (cf. [22] and [2]). Along with formulas and a short description
of the considered robust moment and quantile characteristics, the following methodology sec-
tion also contains the algorithm of the simulation study. Results and inferences drawn from
Monte Carlo simulation are summarised in the next part of the paper, the concluding section
assessing the outcomes of the simulation.

2. METHODS

2.1. L-moments

Let X be a continuous random variable with a cumulative distribution function F (x),
quantile function Q(x) and let X1:n, X2:n, ..., Xn:n be an ordered sample of the size n drawn
from the distribution of the random variable X. L-moments are defined in [11] as a linear
combination of order statistics, the r-th L-moment λr being as follows:

(2.1) λr =
1
r

r−1∑
k=0

(−1)k

(
r−1

k

)
EXr−k:r , r = 1, 2, ... ,

where EXr−k:r is an expected value of the (r−k)-th order statistics from a sample of size r.
L-moments, a robust alternative to product moments, are used to describe random variables
similarly as the classical product moments. The most used L-moments are those of order
r = 1, 2, 3, and 4. The λ1 is equal to the expected value of the variable X, describing its
level, λ2 indicating variability, λ3 shape, and λ4 tail heaviness of the distribution. Hosking and
Wallis in [14] mentioned a dimensionless version of L-moments which is independent of the
distribution scale and more useful than the unbounded version. Dimensionless L-moments τ

are called L-moment ratios. They are defined as

(2.2) τr = λr/λ2 , r = 3, 4, ... ,

where τ3 (L-skewness) and τ4 (L-kurtosis) are most widely used in selection of probability
distributions. Common properties of L-moments and L-moment ratios are as follows:

• They are defined for all distributions with finite expected values (finite values of
higher moments are not required);

• There are not two distributions with the same values of all L-moments;

• −1 < τr < 1 for r = 3, 4, ...;

• 1
4

(3 τ2
3 − 1) ≤ τ4 < 1;

• λ3 = τ3 = 0 for symmetric distributions.
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Estimates of λr and τr are based on an ordered random sample X1:n, X2:n, ..., Xn:n

drawn from the probability distribution of X. Estimates can be calculated using the following
formulas:

λ̂r =
1
r

(
n

r

)−1 n∑
i=1

r−1∑
j=0

(−1)j

(
r − 1

j

)(
i− 1

r − 1− j

)(
n− i

j

)
Xi:n ,(2.3)

τ̂r = λ̂r/λ̂2 , r = 3, 4, ... .(2.4)

Statistical characteristics of estimates are available, e.g. in [2] or [11]).

The R package Lmoments [18] provides functions for evaluation of both symmetric and
asymmetric sample moments. R packages lmomco [3] and Lmoments [16] allow a wide range
of calculations based on L-moments.

2.2. TL-moments

Elamir and Seheult in [8] introduced TL-moments (trimmed L-moments) as a robust
version of L-moments defined by the formula

(2.5) λ(t)
r =

1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
EXr+t−k:r+2t , r = 1, 2, ... ,

where t represents the number of trimmed expected values from both sides of the sample.
Zero weight is assigned to expected (mean) values, which are thus considered as outliers.
Trimming can be either symmetric or asymmetric, the choice of the respective approach
depends on the nature of the data. In the asymmetric form, the ordered sample is trimmed
by t1 values from left and t2 values from right. The EXr+t−k:r+2t in (2.5) is then changed to
EXr+t1−k:r+t1+t2 . The TL-moment is then denoted by λ

(t1,t2)
r .

In this article, we focus only on symmetric trimming with t = 1; this choice is usually
applied in the literature (also in [8]) as well as in practical applications. Trimming of one
value is sufficient to overcome the problem of finite values of the moments for example for
Cauchy distribution and enables the existence of all TL-moments to be finite ([8]), as only
the expected values of minimum and maximum are not defined and their trimming allows
the calculation of all TL-moments. The existence of TL-moments depends on the existence
of expected values of ordered statistics and sometimes, more trimmed values should be used.
For the Pareto distribution, from the formula (6) in [1], the number of necessary trimmed
values depends on the shape parameter. The smaller the parameter, the higher the number of
trimmed values. TL-moments can be used for the description of the distribution of a random
variable. λ

(t)
1 is equal to the expected value of the random variable (if it exists), describing

its level; λ
(t)
2 quantifying variability, λ

(t)
3 shape and λ

(t)
4 tail heaviness of the distribution.

The TL-moment ratios for the shape of distribution τ
(t)
3 (TL-skewness) and tail heavi-

ness τ
(t)
4 (TL-kurtosis) are:

(2.6) τ (t)
r = λ(t)

r /λ
(t)
2 , r = 3, 4, ... .
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Both characteristics are location and scale invariant ([8]). Main properties of TL-moments
and TL-moment ratios are as follows:

• We obtain the L-moments for t = 0 (or t1 = t2 = 0);

• For r ≥ 3 applies (see [13] for the more general equation for the trimming (t1, t2)
instead of symmetric (t, t) denoted by (t)):∣∣τ (t)

r

∣∣ ≤ 2(t + 1)! (r + 2t)!
r(t + r − 1)! (2 + 2t)!

;(2.7)

•
∣∣τ (1)

3

∣∣ ≤ 10
9

and
∣∣τ (1)

4

∣∣ ≤ 5
4

(substituting t = 1 to (2.7));

• τ
(t)
3 = 0 for symmetric distributions.

Sample counterparts of (symmetric) TL-moments λ
(t)
r and τ

(t)
r are based on an ordered ran-

dom sample of size n:

λ̂(t)
r =

1
r

n−t∑
i=t+1

r−1∑
k=0

(−1)k

(
r − 1

k

)(
i− 1

r + t− k − 1

)(
n− i

t + k

)
(

n

t + 2t

) xi:n ,(2.8)

τ̂ (t)
r = λ̂(t)

r /λ̂
(t)
2 , r = 3, 4, ... .(2.9)

The R packages TLmoments [18] and lmomco [3] provides a wide range of useful functions for
application of both symmetric and asymmetric sample TL-moments. In our analysis, we
applied the former one.

2.3. Quantile characteristics of the distributional shape

In classical parametric statistics, the product moment coefficient of skewness is used as
a third standardised raw moment

(2.10) α3 = E(X − EX)3
/

(VarX)3/2,

in the sample version (Xi, i = 1, 2, ..., n) based on the sample moments

(2.11) a3 =
n∑

i=1

(
Xi − X̄

)3
/[

n∑
i=1

(
Xi − X̄

)2

]2/3

,

where X̄ is a mean of the sample.

In the paper, we use more robust characteristics of shape based on robust moments
as L-skewness (2.2) and TL-skewness (2.6) and quantiles. The first characteristic of the
distribution shape mentioned above is the medcouple (referred to as MCF ); see [6]. The
sample version is defined as

(2.12) MCF = mediani,j; xi < xj h(xi, xj) ,
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where h is a kernel function measuring the difference in the distances of xi and xj to the
sample median x̃. This function is given by

(2.13) h(xi, xj) =
[
(xj − x̃)− (x̃− xi)

]/
(xj − xi) ,

for xi 6= xj . If xi = x̃, the value of h(x̃, xj) = 1 for xj > Q(0.5); xj = x̃ gives h(xi, x̃) = −1
for xi < x̃. If xj is infinitely larger than x̃, h is closed to 1. On the other hand, if xi is
infinitely smaller than x̃, h approaches −1. Thus, the medcouple is not influenced by the
presence of extreme values in a random sample; there are no larger/smaller values than ±1.
The medcouple is defined for all continuous distribution functions, existence of the expected
value of any distribution moment is not needed. The functional form of the characteristics is
given in [6].

Bowley in [5] introduced the characteristic of shape based solely on distribution quar-
tiles. It is called the Bowley coefficient of skewness (BC) and is defined as:

(2.14) BC =
{[

Q(0.75)−Q(0.5)
]
−

[
Q(0.5)−Q(0.25)

]}/[
Q(0.75)−Q(0.25)

]
.

Some authors use the term “quartile skewness” instead of the Bowley coefficient.

Hinkley [10] introduced the generalisation of Bowley measure:

(2.15) ν1(p) =
{[

Q(1− p)−Q(0.5)
]
−

[
Q(0.5)−Q(p)

]}/[
Q(1− p)−Q(p)

]
,

for p ∈ (0, 1). It is obvious that the Bowley coefficient is a special case of (2.15) for p = 0.25.

If we use (in (2.15)) the first and sevenths octiles Q(0.125) and Q(0.875), we obtain the
octile skewness (OC):

(2.16) OC =
{[

Q(0.875)−Q(0.5)
]
−

[
Q(0.5)−Q(0.125)

]}/[
Q(0.875)−Q(0.125)

]
.

Groeneveld and Meeden in [9] proposed the coefficient of skewness (GMC) given by

(2.17) GMC =
[
EX −Q(0.5)

]/
E

∣∣X −Q(0.5)
∣∣ .

The last robust quantile characteristic considered is the Pearson coefficient (PC) in-
troduced by Kendall and Stuart in [17]. Its formula is based on (2.17), where instead of
the expected value of the absolute deviation between xi and the median, they employ the
standard deviation

√
VarX of a distribution:

(2.18) PC =
[
EX −Q(0.5)

]/√
VarX .

GMC is defined only for distributions with a finite value E|X|, whereas PC is defined for
that with a finite variance.

All robust quantile and moment characteristics of the distribution shape (2.14)–(2.18)
are defined on a range of values [−1, 1] (except TL-moments,

∣∣τ (1)
3

∣∣ ≤ 1.11). For symmetric
distributions, they are equal to zero. This allows us to compare properties of their estimates
(bias and MSE) using an absolute value basis. The same applies for asymmetric distributions
as they are functionally bounded (despite particular characteristics acquiring different values).
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The robust characteristics considered are applied only to the distributions for which they are
defined (this is not the case, e.g., of Student distribution with 1 degree of freedom [the Cauchy
distribution] and all characteristics based on classical moments or L-moments).

Sample counterparts of characteristics (2.14)–(2.18) are obtained by substituting the
mean for the EX, sample standard error or more robust median absolute deviation for the
standard deviation. There is not a generally accepted method for evaluation of sample quan-
tiles. In the present paper, we use linear interpolation of the inverse of the empirical cumu-
lative distribution function in the form

(2.19) Q̂(p) = xbhc:n +
(
h− bhc

) (
xbhc+1:n − xbhc:n

)
,

where h = (n− 1)p + 1 and bhc is the floor function.

2.4. Quantile characteristics of the tail heaviness

The moment coefficient of the kurtosis is defined as the fourth standardised raw moment

(2.20) α4 = E(X − EX)4/ (VarX)2 ,

in the sample version based on the sample moments

(2.21) a4 =
n∑

i=1

(
Xi − X̄

)4
/ [

n∑
i=1

(
Xi − X̄

)2

]2

.

This sample formula is a biased estimator to α4 (as well as for α3 given in (2.11)) even for a
sample from the normal distribution ([15]).

The first robust characteristics of tail heaviness based on octiles is the Moors coefficient
of kurtosis (MKC); see [19]. The coefficient is defined as

(2.22) MKC =
{[

Q(0.875)−Q(0.625)
]
+

[
Q(0.375)−Q(0.125)

]}/[
Q(0.625)−Q(0.125)

]
.

MKC exists for any continuous distribution taking all positive values.

Crown and Siddiqui in [7] introduced their coefficient defined as

(2.23) CKC =
[
Q(1− α)−Q(α)

]/ [
Q(1− β)−Q(β)

]
,

for α, β ∈ (0, 0.5). The authors recommend using α = 0.025 and β = 0.25 for the normal
distribution. In our study, we follow Crown and Siddiqui recommendation regarding the
considered probability distributions because many of them are symmetric. The suitability of
this arrangement for asymmetric distributions is also open to analysis.

The last characteristic of tail heaviness considered, defined by Schmid and Trede in [21]
as a special case of (2.23), selects α = 0.125 and β = 0.25:

(2.24) PKC =
[
Q(0.875)−Q(0.125)

]/ [
Q(0.75)−Q(0.25)

]
.
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All the above robust quantile characteristics of tail heaviness exist for any distribution, no
finite moment values being necessary. The range of values of these characteristics is [0,∞].
A comparison of the characteristics of tail heaviness estimates based on their absolute values
(means and standard deviations) is not appropriate because of various possible ranges of val-
ues; modification of characteristics (expected value and variance) is thus applied (see (2.25)).

2.5. The algorithm of simulation and methods of comparison

The simulation study employs the Monte Carlo methodology, which assumes knowledge
of the theoretical distribution and its parameters, random samples being drawn from the dis-
tribution and values of all characteristics of interest being computed. Let us consider samples
ranging from 10 to 500 observations, because the greatest differences in estimate character-
istics are expected to concentrate in small-sized samples. The samples comprising 100 and
more observations are used to analyse the convergence of estimation bias and variability.
In the simulation study, we have chosen three symmetric and two asymmetric distributions:

• Student distribution (t(ν), degrees of freedom ν = 1, 2, 3);

• Standard normal distribution (N(0; 1));

• Laplace distribution (La(µ; b), µ = 0, the location parameter, b = 10 the scale of
the distribution);

• Gamma distribution (Gamma(θ; k), θ = 2 the shape parameter, k = 2 the scale
parameter);

• Beta distribution (Beta(θ1; θ2), θ1 = 2, θ2 = 5 the shape parameters).

In Table 1, all characteristics introduced in Sections 2.1–2.4 for selected distributions
are given.

The Student distribution is a symmetric continuous probability distribution, bell-shaped
(similar to the normal distribution) and heavy-tailed (unlike the normal distribution). With
an increasing number of degrees of freedom, the shape of the Student distribution converges
to that of the normal distribution. We focus on how the above affects the properties of esti-
mates. Gamma and beta distributions are also well-established distribution families. Their
shape can be modified by setting different values of parameters. We choose combinations of
parameter values to obtain a positively skewed shape.

The Laplace distribution is also called the double exponential distribution. It is sym-
metrically shaped like Student and normal distributions. The distinction between probability
density functions of Laplace and normal distributions lies in that the latter is expressed as the
squared difference, while the former as the absolute difference from their means, respectively.
The Laplace distribution as a result has heavier tails than the normal distribution. Some of
the chosen robust quantile and moment characteristics exist only if the distribution has one or
more defined raw moments (Table 1). L-moments, for example, exist only for the distribution
with a finite expected value, which does not apply to the Student distribution with one degree
of freedom (Cauchy distribution). The existence of the moment characteristics of skewness
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(coefficient of skewness) assumes finite 3rd raw moment, for the coefficient of kurtosis, we
need finite 4-th raw moment. Estimate calculations are done only if the characteristics are
defined for a particular distribution.

Table 1: Basic characteristics of probability distributions selected in the simulation.
We use “—” for non-existence.

Characteristic t(1) t(3) N(0; 1) La(0; 10) Gamma(2; 2) Beta(2; 5)

EX — 0 0 0 4 217√
Var X — 1 14.142 2.828 0.126

α3 — 0 0 0 1.414 0.596
α4 — — 3 3 0.142 2.88

τ3 — 0 0 0 0.235 0.123

τ
(1)
3 0 0 0 0 0.150 0.080

MCF 0 0 0 0 0.225 0.128
BC 0 0 0 0 0.172 0.095
OC 0 0 0 0 0.287 0.160
GMC 0 0 0 0 0.306 0.165
PCMAD 0 0 0 0 0.227 0.133
PCSD — 0 0 0 0.227 0.133

τ4 — 0.035 0.123 0.035 0.071 0.090
τ1
4 0.077 0.041 0.063 0.041 1.731 0.048

Pearson 8.630 0.547 1.706 0.547 1.262 1.659
MKC 8.663 0.590 1.233 0.590 3.078 1.181
CKC 24,628,907 5.325 2.906 5.325 3.078 2.619

Some 50,000 times random samples were generated from the considered distributions
for sample sizes 10–500, point estimates and standard errors of analysed characteristics cal-
culated as the mean and the sample standard deviation of 50,000 generated values. Bias in
characteristics of shape is shown by the difference between their theoretical value and esti-
mated expected value. We compare the variability of characteristics using estimates of their
standard errors calculated as sample standard deviations and mean squared error MSE.

Because of the wide range of tail heaviness values, which acquire different ones for given
distributions, a comparison using bias and standard error does not induce relevant inferences.
Therefore, we use modified bias and modified MSE characteristics, which are the same as
classical ones divided by the (squared) theoretical value of a robust characteristic. All the
characteristics are put on the same level, the coefficient of variation being based on such an
approach. Finally, we obtain the ratio of the value of bias and MSE to the theoretical value
of the robust characteristic. The modified bias and modified MSE are calculated as (θ is a
parameter, θ̂ is its estimate)

(2.25) E(θ̂ − θ)/θ , Var(θ̂)/θ2.

This allows for a statistical comparison between the properties of different estimates.
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3. RESULTS

3.1. Characteristics of skewness

The bias in estimated characteristics is low for symmetric distributions (Student, normal
and Laplace). Figure1 shows its development depending on sample sizes. For the Student distri-
bution with one degree of freedom (Cauchy distribution), the characteristics τ3, GMC, and PC

are undefined (EX does not exist) and they are not included in the figure (see also Figure 2).
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Figure 1: Estimated bias in distribution shape characteristics
((2.4), (2.9), (2.12), (2.14), (2.16)–(2.18)) for n = 10–500.

Bias curves are similar for all estimates, differing only in their levels, converging to zero
(represented by the dashed line) with an increasing number of observations. Estimation bias
is volatile in small samples (up to 100 observations), which show no constant development.
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The figure indicates the highest bias in BC for each symmetric distribution, τ3 and τ
(1)
3 being

among the estimates with the lowest bias value. In absolute terms, however, it is obvious that
estimation bias is generally small. Values for Student distribution are shown in Table 2. The
lowest values (the best performance for the particular distribution and degrees of freedom)
are highlighted in bold letters, the highest in italics (the worst performance in the block in the
table). The TL-skewness is superior in bias from two degrees of freedom and performs well.
For the Cauchy distribution, the L-skewness is undefined (this characteristic is equivalent to
TL-skewness for t = 0 (no trimmed values)), and the TL-skewness is a first possible defined
value concerning the number of trimmed values.

Table 2: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300),
characteristics of shape ((2.4), (2.9), (2.12), (2.14)–(2.18)). Estimated stan-
dard errors of estimates.

DF Char. 10 20 30 50 70 90 100 150 200 300

τ
(1)
3 0.328 0.264 0.235 0.201 0.178 0.162 0.155 0.132 0.117 0.097

1
MCF 0.335 0.276 0.236 0.190 0.163 0.145 0.1382 0.114 0.099 0.081
BC 0.393 0.307 0.261 0.210 0.180 0.159 0.152 0.126 0.109 0.090
OC 0.439 0.357 0.306 0.253 0.218 0.196 0.186 0.155 0.136 0.111

τ3 0.304 0.255 0.231 0.202 0.18 0.177 0.165 0.146 0.133 0.115

τ
(1)
3 0.236 0.150 0.124 0.093 0.078 0.069 0.066 0.054 0.046 0.038

2
MCF 0.285 0.235 0.201 0.162 0.139 0.123 0.118 0.096 0.084 0.069
BC 0.358 0.278 0.237 0.189 0.161 0.143 0.135 0.111 0.097 0.079
OC 0.350 0.263 0.226 0.179 0.151 0.136 0.128 0.105 0.092 0.075
GMC 0.346 0.282 0.249 0.209 0.186 0.170 0.164 0.142 0.127 0.106

τ3 0.245 0.187 0.161 0.132 0.115 0.104 0.099 0.083 0.073 0.061

τ
(1)
3 0.215 0.128 0.099 0.075 0.062 0.055 0.052 0.042 0.036 0.029

MCF 0.274 0.226 0.194 0.156 0.134 0.119 0.113 0.093 0.081 0.065

3
BC 0.353 0.274 0.233 0.186 0.159 0.141 0.134 0.112 0.095 0.078
OC 0.330 0.243 0.203 0.163 0.138 0.123 0.116 0.095 0.083 0.068
GMC 0.301 0.232 0.197 0.158 0.136 0.121 0.115 0.097 0.083 0.068
PCMAD 0.443 0.280 0.224 0.174 0.148 0.129 0.122 0.099 0.085 0.069
PCSD 0.203 0.156 0.131 0.103 5 0.088 0.078 0.075 0.061 0.053 0.043

For the asymmetric distributions (last row in Figure 1) the τ3 and τ
(1)
3 exhibit the lowest

absolute and relative values of bias for small samples (relative bias is equal to the estimation
bias value divided by the actual value of the characteristic). An extremely high bias even for
the samples with several hundred observations occurs in PCMAD , where MAD is used as a
standard deviation estimate in [19], its convergence being very slow. Both for small and large
samples, bias is low in absolute terms and estimate convergences are relatively fast (except
PC estimates).

Distribution shape estimates vary mostly in variability. Using the standard error of
estimation, Figure 2 illustrates standard errors of estimates. For the Student distribution
with one degree of freedom the characteristics τ3, GMC, and PC are undefined (see also
Figure 1), for this reason, no lines are included. For the normal and Laplace distributions
with relatively low kurtosis and absence of outliers, the standard errors are very close for
both characteristics based on L-moments. Let us first summarise the results for the Student
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distribution (also see Table 3). The τ
(1)
3 and MCF show lower variability (especially in the

case of small samples) than other estimates with one degree of freedom. The shape of the
Student distribution can be estimated using L-moments and Pearson and GM coefficients
only if the number of degrees of freedom is higher than one. The τ3 has lower variability
than the quantile-based estimates but higher than τ

(1)
3 and MCF . For small samples, the

study outcomes confirm that the variability of τ3 and τ
(1)
3 decreases more sharply with an

increasing number of degrees of freedom than the variability of other estimates. The PCSD

and τ
(1)
3 are the estimates with the lowest variability for the Student distribution with three

degrees of freedom, other estimates showing much higher variability.
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Figure 2: Standard errors of estimates of distribution shape characteristics
((2.4), (2.9), (2.12), (2.14), (2.16)–(2.18)) for n = 10–500.

The order of estimates showing the lowest variability for the sample containing ten
observations drawn from the standard normal distribution is τ3, τ

(1)
3 and PCSD. Other

estimates show much higher variability. The difference in variability between τ3 and τ
(1)
3

decreases with an increasing number of observations. The variability of PCSD declines slowly
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compared to τ3 and τ
(1)
3 . Convergence in the variability of other estimates is not fast enough

to reach the value of τ3 and τ
(1)
3 . The last considered symmetric distribution is the Laplace

distribution. As is the case with the normal distribution, τ3 and τ
(1)
3 and PCSD are estimates

with the lowest variability. Also, the speed of their variability convergence seems similar. The
variability of other estimates is significantly higher, their convergence not being fast enough
to achieve τ3 and τ

(1)
3 and PCSD variability. The order of estimates arranged according to

their variability is the same for gamma and beta distributions. The conclusions drawn are
analogous to those concerning the normal distribution. The τ3 and τ

(1)
3 and PCSD show the

lowest variability, that of PCSD decreases more slowly compared to τ3 and τ
(1)
3 . Convergence

in the variability of other estimates is not as fast τ3 and τ
(1)
3 .

Table 3: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300),
modified bias of estimates (defined in (2.25)) of characteristics of kurtosis
((2.4), (2.9), (2.22)–(2.24)).

DF Sample 10 20 30 50 70 90 100 150 200 300

τ
(1)
4 −0.250 −0.193 −0.156 −0.115 −0.074 −0.054 −0.048 −0.042 −0.038 −0.030

1
PKC 0.095 0.110 0.065 0.045 0.019 0.016 0.011 0.010 0.009 0.008
MKC 0.106 0.129 0.075 0.051 0.020 0.017 0.012 0.011 0.010 0.008
CKC 3.028 3.746 3.419 2.768 0.111 0.119 0.026 0.042 0.054 0.021

τ4 −0.224 −0.183 −0.157 −0.125 −0.093 −0.075 −0.069 −0.063 −0.059 −0.050

τ
(1)
4 −0.010 −0.022 −0.022 −0.017 −0.012 −0.009 −0.008 −0.007 −0.006 −0.005

2 PKC 0.024 0.026 0.018 0.013 0.004 0.004 0.002 0.002 0.002 0.002
MKC 0.025 0.030 0.020 0.013 0.002 0.003 0.001 0.001 0.002 0.002
CKC −0.118 −0.037 0.014 0.021 −0.047 −0.026 −0.041 −0.029 −0.021 −0.025

τ4 −0.127 −0.096 −0.077 −0.058 −0.040 −0.031 −0.028 −0.025 −0.023 −0.018

τ
(1)
4 0.075 0.031 0.018 0.009 0.003 0.000 0.000 −0.001 −0.001 0.000

3 PKC 0.018 0.018 0.014 0.010 0.004 0.004 0.002 0.002 0.002 0.002
MKC 0.019 0.021 0.016 0.010 0.003 0.003 0.001 0.001 0.001 0.001
CKC −0.138 −0.087 −0.051 −0.036 −0.049 −0.034 −0.041 −0.032 −0.026 −0.025

3.2. Characteristics of kurtosis

Given the inconsistent values of tail heaviness characteristics of considered distributions
is shown in Figure 3 and for Student distribution in Table 3. For the Cauchy distribution t(1),
again the characteristics based on L-moments is undefined. The most biased estimate for the
Student distribution with one degree of freedom is CKC, converging faster than the other
considered estimates. It belongs to high-biased symmetric distribution estimates comparable
with those for samples with 100 and more observations. The τ

(1)
4 has a high value of modified

bias for small samples drawn from normal and Laplace distributions. The τ4, MKC, and PKC,
on the other hand, are the least-biased estimates for all symmetric distributions (both small and
large samples) considered.Their bias modification values are similar. Table3 contains the values
of the modified bias of estimates for the Student distribution. MKC and PKC are estimates
with the lowest modified bias values for all degrees of freedom considered, including small sam-
ples. The modified bias of τ

(1)
4 is close to MKC and PKC for two and more degrees of freedom.
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The τ4 and CKC exhibit the highest modified bias for this distribution. The τ
(1)
4 is the most

biased estimate for both distributions considered. The τ
(1)
4 overestimates its theoretical value

(for a sample with 10 observations) in the cases of gamma and beta distributions by about 22
and 41%, respectively. Its decline is relatively sharp with an increasing number of observa-
tions, and bias is similar to that of other estimates for samples with 60 and more observations.
The MKC and PKC show the lowest value of modified bias analogous to that for a symmetric
distribution. τ4 is close to MKC and PKC, and CKC estimate is less biased for asymmetric
distributions than for symmetric ones.
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Figure 3: Modified estimation bias (2.25) in distribution tail characteristics
((2.4), (2.9), (2.22)–(2.24)) for n = 10–500.

The variability of estimates is quantified using the variation coefficient. Its development
for symmetric distributions is shown in Figure 4. The τ

(1)
4 has the lowest coefficient of

variation for small samples (up to 25 observations) drawn from the Student distribution
with one degree of freedom, its convergence being slower than that of MKC and PKC.
If a sample consists of more than 25 observations, MKC and PKC are less variable than τ

(1)
4 .
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Figure 4: Variation coefficient of estimates of tail heaviness characteristics
((2.4), (2.9), (2.22)–(2.24)) for n = 10–500.

Table 4 shows values of the variation coefficient of CKC, τ
(1)
4 and τ4 for the Student distribu-

tion dependent on degrees of freedom. Interestingly, the variability of CKC declines markedly
when degrees of freedom change from one to two (from 390.565 to 1.103 for a 10-observation
sample), the variability of τ

(1)
4 and τ4 growing with an increase in degrees of freedom. The

latter two estimates are more variable than other ones in the case of small samples generated
from normal and Laplace distributions. For large samples, the variability of τ4 is comparable
with other estimates. PKC has the lowest variability for each symmetric distribution consid-
ered. For the asymmetric distributions both τ4 and τ

(1)
4 show fast convergence of variability.

However, even for the sample with 500 observations, their variability is several times greater
than that of MKC, PKC and CKC, the variability of τ

(1)
4 being the highest. Therefore,

in terms of variability, neither τ4 nor τ
(1)
4 are appropriate estimates of the tail heaviness of

asymmetric distributions.

Because of estimation bias, comparison of estimates is made on the basis of the mod-
ified mean square error (2.25), the method taking into account both bias and variability of
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estimates. The development of modified MSE is similar to that of estimates of a coefficient of
variation (not given in the text). MSE-based methodology provides results similar to those
yielded by variation analysis.

Table 4: Student distribution (ν = 1, 2, 3; n = 10, 20, 30, 50, 70, 90, 100, 150, 200, 300).
Coefficient of variation of characteristics of kurtosis ((2.4), (2.9), (2.12),
(2.14)–(2.18)).

DF Char. 10 20 30 50 70 90 100 150 200 300

τ
(1)
4 1.025 0.579 0.465 0.365 0.314 0.278 0.265 0.221 0.194 0.160

1
PKC 1.108 0.481 0.350 0.255 0.207 0.182 0.169 0.136 0.118 0.096
MKC 1.327 0.581 0.422 0.308 0.250 0.220 0.205 0.165 0.142 0.116
CKC 96.964 62.156 47.601 1.431 0.844 0.594 0.543 0.405 0.346 0.266

τ4 0.724 0.500 0.422 0.348 0.308 0.281 0.271 0.235 0.213 0.184

τ
(1)
4 1.384 0.685 0.512 0.372 0.307 0.266 0.251 0.202 0.174 0.141

2 PKC 0.462 0.275 0.224 0.175 0.146 0.130 0.122 0.100 0.086 0.071
MKC 0.611 0.368 0.298 0.232 0.194 0.172 0.162 0.132 0.114 0.093
CKC 1.251 0.931 0.685 0.363 0.295 0.261 0.244 0.199 0.175 0.140

τ4 0.805 0.518 0.422 0.332 0.286 0.256 0.245 0.204 0.179 0.149

τ
(1)
4 1.601 0.775 0.568 0.410 0.336 0.292 0.276 0.221 0.189 0.154

3 PKC 0.390 0.247 0.203 0.160 0.134 0.119 0.112 0.092 0.079 0.065
MKC 0.537 0.343 0.279 0.220 0.184 0.163 0.154 0.125 0.108 0.089
CKC 0.623 0.447 0.351 0.269 0.222 0.200 0.189 0.156 0.137 0.111

4. CONCLUSION

Simulation results show that the bias of distribution shape estimates is low for both
symmetric and asymmetric probability distributions. The main difference between estimates
is in their variability (quantified by standard error). τ3 and τ

(1)
3 are estimates with small

variability, the best robust quantile ones in terms of variability being MCF and PCSD. The
variability of τ3 and τ

(1)
3 decreases more sharply than that of other estimates in the case of

small samples with an increasing number of degrees of freedom of the Student distribution.
The τ3 and τ

(1)
3 and PCSD are the most appropriate estimates for symmetric (Student, normal

and Laplace) and asymmetric (gamma and beta) distributions dealt with in this paper.

Some conclusions concerning tail heaviness estimates follow: τ4 and τ
(1)
4 has a high

value of modified bias for small samples drawn from normal and Laplace distributions, τ
(1)
4 is

the most biased estimate for asymmetric distributions, and MKC and PKC are those with the
lowest value of modified bias as far as Student distributions are concerned. We conclude that
τ4, MKC and PKC show the lowest bias for all the considered symmetric and asymmetric
distributions (small and large samples alike), values of their modified bias being mutually
comparable. The variability of τ

(1)
4 and τ4 increases with increasing degrees of freedom of the

Student distribution. As for small samples generated from Normal and Laplace distributions,
τ

(1)
4 and τ4 are more variable than other estimates. The τ4 variability is comparable to

other estimates for large samples. While PKC indicates the lowest variability for each given
symmetric distribution, the variability of τ4 and τ

(1)
4 is much higher than that of other tail

heaviness estimates for asymmetric distributions.
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Estimates of distributional shape based on L- and TL-moments possess the best char-
acteristics (bias and variability), outperforming those yielded by a robust quantile approach
in the situations considered. Our study, however, also confirms that robust quantile-based
estimators produce more reliable tail heaviness estimation outcomes than those based on
L- and TL-moments.
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Authors: Selim Orhun Susam �

– Department of Econometrics, Munzur University,
Tunceli, Turkey
orhunsusam@munzur.edu.tr

Mahmut Sami Erdoğan
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1. INTRODUCTION

In statistical theory and applications, copula models are useful tools for determining the
dependence structure between the random variables. For instance, when two random vari-
ables of X and Y with joint cumulative distribution function H and marginals of F and G

are considered respectively, there exists a copula C such that H(x, y) = C
(
F (x), G(y)

)
, for all

x, y in R. In the literature, there are many parametric copula families which have different de-
pendence structure. The main focus of this paper was on the Archimedean copula class, which
is characterized by generator function ϕ. Archimedean copula with generator function ϕ

is defined by

(1.1) C(u, v) = ϕ[−1]
{
ϕ(u) + ϕ(v)

}
, u, v ∈ [0, 1] ,

where ϕ is a generator function which is continuous and strictly decreasing convex function
defined from I to [0,∞) such that ϕ(1) = 0.

Genest et al. [15] showed that the function ϕ can be obtained by the univariate distri-
bution function of K(t) = P

(
C(u, v) ≤ t

)
. Remarkably, there is a relationship between the

function ϕ(t) and K(t) as

(1.2) K(t) = t− ϕ(t)
ϕ′(t)

.

The Kendall distribution function K(t) has some important properties. These properties are
summarized by Nelsen [20] as follows:

1. K(0) = 0;

2. K(1) = 1;

3. K(t) > t, t ∈ (0, 1);

4. K ′(t) > 0, t ∈ (0, 1).

The dependence structure of the Archimedean copula family is characterized by K(t). Kendall’s
tau (τ) is designed to describe how large (or small) values of one random variable appear
with large (or small) values of the other as defined by Genest et al. [13] by

(1.3) τ = 3− 4
∫ 1

0
K(t) dt .

Also, the tail dependence is related to the level of dependence in the upper-right (λU) or
lower-left (λL) quadrant tail of a bivariate distribution. Michiels et al. [19] defined λL and
upper λU dependence as

λL = 2
lim

t→0+

(
t−K(t)

)′
,(1.4)

λU = 2− 2
lim

t→1−

(
t−K(t)

)′
.(1.5)
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Some well-known Archimedean copula functions were proposed by Clayton [4], Frank [11], and
Gumbel [17]. The generator functions of ϕ(t) and Kendall distribution functions K(t) of these
copulas are summarized in Table 1. And also, Kendall’s Tau (τ), Lower λL and Upper λU

tail dependence coefficients for Gumbel, Clayton, and Frank copula are listed in Table 2.

Table 1: Archimedean Copulas with Generator functions ϕ(t).

Copula ϕ(t) K(t) Range of θ

Clayton
t−θ − 1

θ
t +

t (1− tθ)

θ
(−1,∞)− {0}

Frank − log

�
exp(tθ)− 1

exp(θ)− 1

�
t−

�
exp(tθ)− 1

�
log

�
exp(−t θ)−1
exp(−θ)−1

�
θ

(−∞,∞)− {0}

Gumbel
�
− log(t)

�θ
t− t log(t)

θ
[1,∞)

Independence − log(t) t− t log(t) —

Table 2: Kendall’s Tau (τ), Lower λL and Upper λU tail dependence for some Archimedean copulas.

Copula τ(θ) λL λU

Clayton
θ

θ + 2
2−

1
θ 0

Frank 1 + 4θ−1
�
D∗

1(θ)− 1
�

0 0

Gumbel
θ − 1

θ
0 2− 2

1
θ

∗ D1(x) = x−1

Z x

0

t
�
exp(t)− 1

�−1
dt

Modern risk management is mainly interested in assessing the amount of Kendall’s
tau and tail dependence. For this reason, many minimum-variance portfolio models are
based on correlation. However, correlation itself is not enough to describe a tail depen-
dence structure and often results in misleading interpretations (Embrechts et al. [7]). The
importance of this issue has led to some improvements in the estimation of the dependence
coefficients. Kollo et al. [18] examined tail behavior of skew t-copula considering the bivariate
case. They used the method of moments and the maximum likelihood for the estimation of
the tail dependence coefficients. Ferreira [10] proposed a nonparametric estimator of the tail
dependence coefficient and proved its strong consistency and asymptotic normality in the
case of known marginal distribution functions. Schmidt et al. [21] proposed a set of non-
parametric estimators for the upper and lower tail copula and established results of weak
convergence and strong consistency for the tail-copula estimators. Ferreira et al. [9] intro-
duced the s, k-extremal coefficients for studying the tail dependence between the s-th lower
and k-th upper order statistics of a normalized random vector. Caillault et al. [3] introduced
nonparametric estimators for upper and lower tail dependence whose confidence intervals
are obtained with the bootstrap method as they called these estimators “Naive estimators”.
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Goegebeur et al. [16] introduced a class of weighted functional estimators for the coefficient of
the tail dependence in bivariate extreme value statistics while they also derived the minimum
variance asymptotically unbiased estimator.

In this paper, plug-in estimations of Kendall’s tau, upper tail dependence and lower
tail dependence are introduced. To the author’s best knowledge, this is the first study ex-
amining the estimation of the dependence coefficients using the plug-in method. The use
of Bernstein–Bézier polynomials reduced the complexity of the non-parametric estimation of
the tail dependence coefficients. Besides, the proposed estimation method of the dependence
coefficient is flexible depending on its polynomial degree while the error of the estimation can
be reduced by increasing or decreasing the degree of the polynomial.

The remainder of the study is organized as follows. In Section 2, the estimation of
Kendall distribution function based on Bernstein polynomials is discussed. In Section 3,
Kendall’s tau and tail dependence coefficients are estimated by the plug-in principle. The
performance of the new estimation methods for the dependence coefficients is investigated in
Section 4. In Section 5, the new estimator of Kendall’s tau and tail dependence coefficients
are applied to three real data sets. Finally, the conclusion is presented in Section 6.

2. ESTIMATION OF THE KENDALL DISTRIBUTION FUNCTION

Before introducing the estimation of the dependence coefficients for Archimedean cop-
ulas, it is important to investigate the estimation of Kendall distribution function since the
dependence coefficients of Archimedean copula are closely related to the Kendall distribution
function as stated in the last section. First time in the literature, Genest et al. [15] inves-
tigated the empirical estimate of Kendall distribution function. For the estimation of the
random variable of T = H(x, y), univariate distribution function of K(t) = P

(
H(x, y) ≤ t

)
=

P
(
C(u, v) ≤ t

)
should be estimated within the interval of [0, 1]. This estimation process can

be accomplished by two steps:

1. Constructing the empirical bivariate distribution function of Hn(X, Y );

2. Obtaining the pseudo observations of T̂i by

T̂i =
n∑

j=1

I
(
Xi <Xj , Yi <Yj

)/
(n− 1) , i = 1, ..., n .

By using these pseudo observations, K(t) is estimated by the empirical distribution
function as

Kn(t) =
n∑

i=1

I
(
T̂i≤ t

)
/n .

Genest et al. [15] stated that the empirical estimation of Kendall distribution function
is
√

n-consistent estimator while Barbe et al. [1] proved consistency of this estimator.

Generally, the classical empirical distribution function has a good performance as an
estimator of the distribution function. However, estimating continuous distribution function
may not be appropriate (Susam et al. [22, 23], Erdogan et al. [8]) since it has discontinuities.
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Because of this, Susam et al. [22] proposed a smooth estimate of Kendall distribution function
Kn,m given by the following equation:

Kn,m(t) =
m∑

k=0

Kn

(
k

m

)
Pk,m(t) , t ∈ [0, 1] ,

where Pk,m(t) =
(

m
k

)
tk(1− t)m−k is the Binomial probability. Susam et al. [23] proposed the

Bézier curve based estimation of Kendall distribution function of Kα,m which has lower mean
integrated squared error (MISE) scores than Kn,m(t). They defined Kα,m as it is based on a
set of the control points of αi, i = 0, ...,m, as given by the following equation:

Kα,m(t) =
m∑

k=0

αk Pk,m(t) , t ∈ [0, 1] .

Also, they state that if the following constraints defined on the control points of αi (i =
1, ...,m) hold, then the Bézier curve based on the estimation of Kendall distribution function
of Kα,m satisfies all the properties of the Kendall distribution function.

Theorem 2.1 (Susam et al. [23]). The estimator Kα,m(t) satisfies properties of Kendall

distribution function under the following constraints hold:

1. α0 = 0 < α1 < α2 < ··· < αm = 1;

2. αi > i
m , i = 1, ...,m− 1.

They used minimum quadratic distance estimator which is based on the empirical
Kendall distribution for estimating the control points of αi (i = 1, ...,m− 1). Also, Susam
et al. [24] proposed minimum distance estimator for Kα,m(t) based on Bernstein estimate
of Kendall distribution function Kn,m(t). They stated that the minimum distance method
based on Kendall distribution using Bernstein polynomials outperforms the method based on
empirical Kendall distribution.

3. ESTIMATION OF DEPENDENCE COEFFICIENTS BASED ON BÉZIER
CURVE ESTIMATION OF KENDALL DISTRIBUTION FUNCTION

It is possible to estimate Kendall’s tau, lower and upper tail dependence by replacing
K(t) with its non-parametric estimation provided in Equations (1.3), (1.4) and (1.5). For
a given bivariate random sample of size n, (X1, Y1), ..., (Xn, Yn) from X and Y , plug-in
estimation of Kendall’s tau, lower and upper tail dependence for Archimedean copula could
be derived from the following equations:

τ̂ = 3− 4
∫ 1

0
Kα,m(t) dt ,(3.1)

λ̂L = 2
lim

t→0+

(
t−Kα,m(t)

)′
,(3.2)

λ̂U = 2− 2
lim

t→1−

(
t−Kα,m(t)

)′
,(3.3)



552 S.O. Susam and M.S. Erdoğan

where Kα,m(t) is the estimation of Kendall distribution function based on the Bézier curve
introduced in Section 2. Then, the next lemmas are provided for the estimation of Kendall’s
tau, lower and upper tail dependence for Archimedean copulas.

Lemma 3.1. Let Kα,m(·) be the estimator of Kendall distribution function based on

the Bézier curve while α̂k (k = 1, ...,m− 1) estimates the control points. The estimator of

Kendall’s tau for Archimedean copula is obtained by

τ̂ = 3− 4
m∑

k=0

α̂k

(m

k

)
β
(
k +1,m− k +1

)
,

where β(·, ·) is the beta function defined as β(v1, v2) =
∫ 1
0 tv1−1(1− t)v2−1 dt for v1 and v2

positive integers.

Lemma 3.2. Let Kα,m(·) be the estimator of Kendall distribution function based on

the Bézier curve while α̂k (k = 1, ...,m− 1) estimates the control points. The estimation of

the lower tail and the upper tail dependence for the Archimedean copula is obtained by

λ̂L = 21−m bα1 ,

λ̂U = 2− 21−m(1−bαm−1) .

Proof: First order derivative of Bézier curve is derived by

K ′
α,m(t) = m

m−1∑
k=0

(αk+1 − αk) Pk,m−1 .

From the end-point rule of the Bézier curve, lim
t→0+

K ′
α,m(t) and lim

t→1−
K ′

α,m(t) are equal to

m(α1−α0) and m(αm−αm−1) respectively (see Duncan [6]). Because of α0 = 0 and αm = 1,
then the desired results are obtained.

It is observed that λ̂L and λ̂U are affected by only the control points of α1 and αm−1,
respectively. The range of the dependence coefficients depending on the polynomial degree m

is summarized in Table 3. The results show that the range of dependence coefficients gets
wider as the degree of the polynomial increases.

Table 3: Interval of Kendall’s Tau (τ), Lower λL and Upper λU tail dependence
for varying polynomial degrees of m.

Degree (m) τ λU λL

5 [−0.33, 1] [0, 1] [0.0625, 1]
10 [−0.64, 1] [0, 1] [0.0019, 1]
15 [−0.75, 1] [0, 1] [6.1×10−5, 1]
20 [−0.81, 1] [0, 1] [1.9×10−6, 1]
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For estimating the control points of αi (i = 0, ...,m− 1), statistical programming lan-
guage R is used. The package“nloptr” is quite handy for optimizing non-linear function. The
Augmented Lagrangian algorithm (auglag) included in the package “nloptr” should be used.
Since Kα,m(·) has a complex function for higher polynomial degree so that may cause trouble
in optimization. In order to overcome such a problem, the number of maximum evaluation
number (maxeval) is recommended to be selected as at least 50.000 in the optimization.

4. MONTE CARLO SIMULATION

To determine the performance of the estimation of τ , λU, and λL, the Monte Carlo
simulation is conducted. 1.000 Monte Carlo samples with n = 150 size are generated from
each type of Archimedean copulas. For instance, parameters of θ = 1.11, 1.25, 1.44 is used
for Gumbel copula while parameters of θ = 0.22, 0.50, 0.85 is used for Clayton copula and
θ = 0.91, 1.86, 2.92 is used for Frank copula. Each copula has different shapes and character-
istics. Clayton copula exhibits strong left tail dependence. In contrast to Clayton, Gumbel
has strong right tail dependence while Frank copula exhibits symmetric and weak tail depen-
dence in both tails. Detailed information about these Archimedean copulas is provided in
Nelsen [20]. In all estimation methods, the Bézier curve degrees are selected for m = 1, ..., 20.
The mean of the estimation of the dependence coefficients for τ , λU, and λL Archimedean
copulas for the varying degrees of m = 5, 10, 15 and 20 are summarized in Tables 4, 5, and 6.

The following results are obtained from Tables 4, 5, and 6:

• For the estimation of Kendall’s tau, the mean of the τ estimates is closer to the true
value for the polynomial degree of m = 5 when the true copula belongs to Gumbel,
Clayton, or Frank.

• When the true copula is Gumbel with τ = 0.1, 0.2, 0.3, mean of the λU estimates
is closer to true value for the polynomial degree of m = 10 while the mean of the
estimation of λL is closer to true value for the polynomial degree of m = 20.

• When the true copula is Clayton with τ = 0.1, 0.2, 0.3, mean of the λU estimates
is closer to true value for the polynomial degree of m = 20 while the mean of the
estimation of λL is closer to true value for the polynomial degree of m = 5.

• When the true copula is Frank with τ = 0.1, 0.2, 0.3, while the mean of the λU

estimates are closer to true value for the polynomial degree of m = 20 while the
mean of the λL estimates is closer to true value for the polynomial degree of m = 20.

The results obtained from Figures 1, 2, and 3 are:

• As the dependence level increases for Gumbel, Clayton, and Frank copula, the vari-
ance of the estimations of the τ , λU, and λL increases as well.

• When the true copula belongs to the Clayton family with θ = 0.22, 0.50 and 0.85,
the variance of λU estimation decreases as the degree of polynomial increases.
On the contrary, the variance of λL increases as the degree of polynomial increases.
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• When the true copula is Frank with θ = 0.91, 1.86, 2.92, the variance of λU decreases
as the degree of polynomial increases. On the other hand, the variance of λL does
not change as the degree of polynomial increases.

• In all the estimations of dependence coefficients, the estimation of τ , λL and λU get
closure to the real values as the polynomial degree increases.

Table 4: Mean of the estimation of τ of Archimedean copulas.

Copula θ τ bτ5 bτ10 bτ15 bτ20

1.11 0.099 0.0956 0.0886 0.0876 0.0845
Gumbel 1.25 0.200 0.1923 0.1883 0.1876 0.1858

1.43 0.300 0.2909 0.2885 0.2880 0.2862

0.22 0.099 0.0937 0.0896 0.0889 0.0871
Clayton 0.50 0.200 0.1922 0.1903 0.1898 0.1882

0.85 0.300 0.2901 0.2884 0.2879 0.2869

0.91 0.099 0.0992 0.0897 0.0885 0.0861
Frank 1.86 0.200 0.1972 0.1894 0.1879 0.1872

2.92 0.300 0.2966 0.2897 0.2886 0.2875

Table 5: Mean of the estimation of λU of Archimedean copulas.

Copula θ λU
bλ5

U
bλ10

U
bλ15

U
bλ20

U

1.11 0.132 0.0963 0.1384 0.1265 0.1326
Gumbel 1.25 0.258 0.1862 0.2299 0.2080 0.2311

1.43 0.376 0.2912 0.3207 0.2947 0.3418

0.22 0.000 0.0243 0.0450 0.0346 0.0198
Clayton 0.50 0.000 0.0448 0.0454 0.0401 0.0251

0.85 0.000 0.0563 0.0518 0.0447 0.0296

0.91 0.000 0.0164 0.0516 0.0395 0.0213
Frank 1.86 0.000 0.0338 0.0564 0.0481 0.0344

2.92 0.000 0.0476 0.0721 0.0620 0.0444

Table 6: Mean of the estimation of λL of Archimedean copulas.

Copula θ λL
bλ5

L
bλ10

L
bλ15

L
bλ20

L

1.11 0 0.1605 0.0876 0.0637 0.0580
Gumbel 1.25 0 0.1932 0.1132 0.0855 0.0790

1.43 0 0.2330 0.1490 0.1185 0.1082

0.22 0.04 0.1964 0.1380 0.1161 0.1140
Clayton 0.50 0.25 0.2985 0.2558 0.2302 0.2405

0.85 0.44 0.4240 0.3943 0.3744 0.4010

0.91 0 0.1694 0.0901 0.0651 0.0578
Frank 1.86 0 0.2107 0.1168 0.0852 0.0737

2.92 0 0.2565 0.1484 0.1101 0.0949
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(a) τ estimation for θ = 1.11
(τ = 0.1).

(b) τ estimation for θ = 1.25
(τ = 0.2).

(c) τ estimation for θ = 1.43
(τ = 0.3).
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(d) λU estimation for θ = 1.11
(λU = 0.13).

(e) λU estimation for θ = 1.42
(λU = 0.25).

(f) λU estimation for θ = 2
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(g) λL estimation for θ = 1.11
(λL = 0).

(h) λL estimation for θ = 1.42
(λL = 0).

(i) λL estimation for θ = 2
(λL = 0).

Figure 1: Box-plots of the estimation of the dependence coefficients of Gumbel copula
with parameters of θ = 1.11, 1.25, 1.43.
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(a) τ estimation for θ = 0.22
(τ = 0.1).

(b) τ estimation for θ = 0.50
(τ = 0.2).

(c) τ estimation for θ = 0.85
(τ = 0.3).
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(d) λU estimation for θ = 0.22
(λU = 0).

(e) λU estimation for θ = 0.50
(λU = 0).

(f) λU estimation for θ = 0.85
(λU = 0).
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Figure 2: Box-plots of the estimation of the dependence coefficients Clayton copula
with parameters of θ = 0.22, 0.50, 0.85.
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(a) τ estimation for θ = 0.91
(τ = 0.1).

(b) τ estimation for θ = 1.86
(τ = 0.2).

(c) τ estimation for θ = 2.92
(τ = 0.3).
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(d) λU estimation for θ = 0.91
(λU = 0).

(e) λU estimation for θ = 1.86
(λU = 0).

(f) λU estimation for θ = 2.92
(λU = 0).
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(g) λL estimation for θ = 0.91
(λL = 0).

(h) λL estimation for θ = 1.86
(λL = 0).

(i) λL estimation for θ = 2.92
(λL = 0).

Figure 3: Box-plots of the estimation of the dependence coefficients Frank copula
with parameters of θ = 0.91, 1.86, 2.92.
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5. APPLICATIONS

To demonstrate the performance of new dependence coefficients estimation in previous
sections, the Gumbel, Clayton and Frank copula is fit to the following three real data sets:

• The first data set is comprised of 1500 general liability claims randomly chosen
from late settlement lags (Frees et al. [12]) and was provided by Insurance Services
Office, Inc. Each claim consists of an indemnity payment (the loss) and an allocated
loss adjustment expense (ALAE). The data is available in the R package “copula”.
For simplicity, 34 censored data have not been used.

• According to the manual of R’s package “lcopula”, the nutrient data frame con-
sists of quintuples consisting of four-day measurements for the intake of calcium,
iron, protein, vitamin A and C for the women aged from 25 to 50 in the United
States as part of the “Continuing Survey of Food Intakes of Individuals” program.
The processed data has 737 measurements from a cohort study of the United States
Department of Agriculture (USDA) and is available online at the University of Penn-
sylvania repository. The main concern is to estimate the dependence coefficients of
Women’s daily nutrient intake of calcium and vitamin C.

• A population of women who were at least 21 years old, of Pima Indian heritage, and
living near Phoenix, Arizona, was tested for diabetes according to World Health
Organization criteria by using R’s package of “MASS”. The data were collected by the
US National Institute of Diabetes and Digestive and Kidney Diseases. The training
set “Pima.tr” contains a randomly selected set of 200 subjects. An application is
illustrated for determining dependence coefficients of Triceps skinfold thickness and
body mass index in Pima Indian women.
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Figure 4: Scatter plots of real data sets.
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Figure 4 shows the scatter plots of the three data sets. When Figure 4 is examined,
the dependence structure between involved random variables is obvious. In order to assess
the goodness-of-fit results, the Cramér von Mises (CvM ) statistic is used:

(5.1) CvM = n

∫ 1

0

(
K̂n(t)−K

bθ
(t)

)2
dK

bθ
(t) ,

where K̂n is the empirical Kendall distribution function as a non-parametric estimator of
K(t). The dependence parameter θ is estimated by means of the Pseudo-likelihood method.
The statistic is evaluated by the relevant p-value obtained by running 10.000 Monte Carlo
samples as the method is described in Berg [2] and Genest et al. [14]. All goodness-of-fit
results and parametric estimation of dependence coefficients are presented in Table 7 while
Table 8 provides the estimation results of τ , λL and λU based on Bézier curve for three data
sets.

Table 7: Goodness-of-fit results based on K(t) for three reel data sets.

Data Copula Parameter bτ bλL
bλU CvM p-value

Gumbel 1.4607 0.3154 0 0.3927 0.0414 0.8291
Loss-Alea Frank 3.0942 0.3154 0 0 0.2293 0.0292

Clayton 0.9214 0.3154 0.4713 0 1.4181 0.0000

Gumbel 1.2665 0.2104 0 0.2714 0.5627 0.0000
Calcium-Vit. C Frank 1.9651 0.2104 0 0 0.3546 0.0011

Clayton 0.5330 0.2104 0.2724 0 0.0505 0.6073

Gumbel 2.0933 0.5222 0 0.6074 0.1393 0.0221
Thick.-Bmi Frank 6.1568 0.5222 0 0 0.0711 0.2252

Clayton 2.1866 0.5222 0.7283 0 0.2343 0.0014

Table 8: The estimation of τ , λU and λL for three reel data sets.

Data Est. Meth. m = 5 m = 10 m = 15 m = 20

bτm 0.3030 0.2984 0.2981 0.2979

Loss-Alea bλm
U 0.3631 0.4161 0.3852 0.3982bλm
L 0.2267 0.1248 0.0897 0.0626

bτm 0.2061 0.2051 0.2049 0.2075

Calcium-Vit. C bλm
U 0.0523 0.0593 0.0116 0.0865bλm
L 0.2863 0.2472 0.2568 0.2687

bτm 0.4769 0.4694 0.4668 0.4651

Thick.-Bmi bλm
U 0.2517 0.0783 0.0062 0.0001bλm
L 0.3826 0.2049 0.1143 0.0724

The results in Table 7 represent that Gumbel copula is a good choice for variables
Loss-Alea with a p-value of 0.8291. It is concluded from Table 8 that as the degree of polyno-
mial increases, estimation of λU and λL approach to the parametric estimate of dependence
coefficients of Gumbel copula for Insurance data. For Calcium and Vitamin-C data, Clayton
copula fits the data well with p-value of 0.6073. For the estimation of λL, λ̂20

L is closure to the
parametric estimate of λL = 0.2714. Also, it is obtained that the estimation of λU approaches
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to the parametric estimate of λU = 0 as polynomial degree increases. For the triceps skinfold
thickness and body mass index in Pima Indian women, Frank copula provides the best fit with
p-value of 0.2252 from a statistical point of view. Tables 7 and 8 indicate that the estimation
of λU and λL approaches to the parametric estimate of λU = 0 and λL = 0. In addition,
Figure 5 shows the estimations of dependence coefficients for three real data sets depending
on the polynomial degree m = 1, ..., 20. It can be concluded that, as the polynomial degree
increases the estimation of dependence coefficients gets closure to the real values.
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Figure 5: Estimations of dependence coefficients of data sets for degree m = 1, 2, ..., 20.
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6. CONCLUSION

In this study, a method of estimating the dependence coefficients of bivariate
Archimedean family of copula is proposed. The Kendall’s tau, lower tail dependence and
upper tail dependence are estimated by using the Bézier curve. The new estimator of the
dependence coefficients are flexible by the polynomial degree of m. A Monte Carlo simulation
study is performed to measure the performance of the proposed estimation method for τ , λU,
and λL. The performance according to the different levels of dependence size is investigated
as well. The simulation results show that the new estimator of τ , λU, and λL presented a
good performance. Besides, the new estimators of τ , λU, and λL indicated a satisfactory
performance for the three data sets examined.
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1. INTRODUCTION

Censored data occurs commonly in reliability and survival analysis. There are mainly
two censoring schemes which are type-I censoring where the life-testing experiment stops at
a predetermined time, say T and type-II censoring, where the life-testing experiment stops
when predetermined number of failures, saym, are observed. Epstein [19] proposed the hybrid
censoring scheme which is the mixture of type-I and type-II censoring schemes. The hybrid
censoring scheme has become quite popular in the reliability and life-testing experiments so
far. For example, see the papers of of Chen and Bhattacharya [13], Childs et al. [15], Kundu
and Joarder [26], Balakrishnan and Kundu [10]. It is worth mentioning that the book of
Balakrishnan and Cramer [8] discussed the topics of progressive censoring and progressive
hybrid censoring in detail as separate chapters. In these schemes, it is allowed to remove
the units only at the terminal points of the experiments. However, Kundu and Joarder [26]
introduced another scheme which is called the type-I progressively hybrid censoring scheme
(type-I PHCS) such that it allows removals of units during the test time. For more information
on progressive censoring, we refer to to Balakrishnan and Aggarwala [7], Balakrishnan [6] and
Balakrishnan and Cramer [8]. Type-I PHCS can be viewed as a mixture of type-I progressive
censoring and hybrid censoring as follows: Assume that there are n identical units in a
lifetime experiment with the progressive censoring scheme (R1, R2, ..., Rm), 1 ≤ m ≤ n and
the lifetime experiment ends at a predetermined time T ∈ (0,∞) and n,m,Ri’s are all fixed
non-negative integers. At the time of first failure, say X1:m:n, R1 units randomly removed
from the remaining n− 1 units. Similarly, when the second failure occurs at the time X2:m:n,
R2 units are removed from the remaining n−R1 − 2 units. This process continues up to the
end of experiment which occurs at the time min(Xm:m:n, T ). Therefore, if the m-th failure
occurs before time T , the experiment ends at the time Xm:m:n and all the remaining units
Rm = n−

∑m−1
i=1 Ri −m are removed. However, if the experiment ends at time T with only

J failures, 0 ≤ J < m, then all the remaining units R∗
J = n−

∑J
i=1Ri − J are removed and

the test ends at time T . Therefore, under type-I PHCS we have the following two cases:

• Case I: {X1:m:n, X2:m:n, ..., Xm:m:n} if Xm:m:n ≤ T .

• Case II: {X1:m:n, X2:m:n, ..., XJ :m:n} if XJ :m:n < T < XJ+1:m:n.

Due to the fact that the lifetime distributions of many experimental units can be mod-
eled by a two-parameter Weibull distribution which is one of the most commonly used model
in reliability and lifetime data analysis, we consider the Weibull distribution in this paper.
The probability distribution function (PDF) and cumulative distribution function (CDF) of
two parameter Weibull distribution are given as follows:

f(x;α, β) = αβxα−1 exp{−βxα} ,(1.1)

F (x;α, β) = 1− exp{−βxα} ,(1.2)

where α > 0 is the shape parameter and β > 0 is the scale parameter.

Ng et al. [34] used the estimation method, along with Fisher information matrix, in
the context of optimal progressive censoring schemes for the Weibull distribution. Banerjee
and Kundu [12] considered the statistical inference on Weibull parameters when the data are
type-II hybrid censored, maximum likelihood estimation (MLE), approximate MLE and Bayes
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estimation techniques were studied by the authors. Balakrishnan and Kateri [9] proposed
an alternative approach based on a graphical method, which also shows the existence and
uniqueness of the MLEs. Lin et al. [30] studied the MLEs and the approximate MLEs
(AMLEs) of the parameters of Weibull distribution under adaptive type-II progressive hybrid
censoring. Huang and Wu [20] discussed the maximum likelihood estimation and Bayesian
estimation of Weibull parameters under progressively type-II censoring scheme. Lin et al. [28]
investigated the maximum likelihood estimation and Bayesian estimation for a two-parameter
Weibull distribution based on adaptive type-I progressively hybrid censored data which was
introduced by Lin and Huang [29]. Jia et al. [21] studied the exact inference on Weibull
parameters under multiple type-I censoring. Mokhtari et al. [32] discussed the approximate
and Bayesian inferential procedures for the progressively type-II hybrid censored data from
the Weibull distribution. However, this type of censoring is identical to what we called
as type-I progressive hybrid censored data. This paper will be different from [32] in three
directions. Firstly, we introduce a new approach for inference about the Weibull distribution
based on expectation-maximization (EM) and stochastic expectation-maximization (SEM)
methods. We will show that both EM and SEM will result to have better estimates in
the sense of having smaller biases and mean square errors. Secondly, we will derive the
shrinkage estimators based on the ML estimates resulting to have higher deficiencies. Finally,
in the Bayesian approach, different loss functions such as squared error loss (SEL), linear-
exponential (LINEX), and general entropy loss (GEL) will be applied with both informative
and non-informative priors.

The rest of the paper is organized as follows: In Section 2, MLE of the parameters are
introduced by using Newton–Raphson (NR) algorithm, EM algorithm and SEM algorithm,
also the Fisher information matrix is obtained. In Section 3, Bayes estimation for the pa-
rameters of Weibull distribution under the assumption of independent priors using different
loss functions such as SEL, LINEX and GEL loss functions. Moreover, Tierney and Kadane
[44] (T–K) approximations under these loss functions are also computed and Markov-Chain
Monte Carlo (MCMC) method is also presented to estimate the parameters. In Section 4,
a shrinkage pre-test estimation method is discussed. Extensive Monte Carlo simulations are
conducted and results are discussed in Section 5. A real data example is presented in Section 6
to illustrate the findings of the study. Finally, some conclusive remarks are given in Section 7.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let X = (X1:m:n, ..., Xr:m:n) represents the type-I progressively hybrid censored sample
of size r from a sample of size n drawn from a population with probability distribution given
in Equation (1.1). Throughout this paper, we will denote Xi:m:n by X(i), i = 1, 2, ..., r. Then
the likelihood function of (α, β) given the observed data x can be written as

L(α, β |x) ∝
r∏
i=1

f(x(i);α, β)
[
1− F (x(i);α, β)

]Ri
[
1− F (C;α, β)

]RT ,(2.1)

where r=m, C = x(m), RT = 0 in Case I, and r= d, C = T , RT = n− d−
∑d

i=1Ri in Case II.
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Based on the observed data, the log-likelihood function can be expressed as

l(α, β |x) = lnL(α, β |x)

= r ln(αβ) + (α−1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
xα(i) (1+Ri)

}
− β CαRT .(2.2)

Taking the derivatives of Equation (2.2) with respect to α and β and equating them to zero,
one can obtain the following likelihood equations for α and β respectively:

∂l(α, β |x)
∂α

=
r

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)}
− β Cα ln(C)RT = 0 ,(2.3)

∂l(α, β |x)
∂β

=
r

β
−

r∑
i=1

{
xα(i)(1+Ri)

}
− CαRT = 0 .(2.4)

Solving Equation (2.4) yields the MLE of β which is given by

β̂ =
r

CbαRT +
∑r

i=1

{
xbα(i)(1+Ri)

} .(2.5)

Now, substituting Equation (2.5) into (2.3), the MLE of α can be obtained by solving the
following nonlinear equation:

r

α̂
+
r
[∑r

i=1

{
(1+Ri) xbα(i) ln(x(i))

}
+RT Cbα ln(C)

]
RT Cbα +

∑r
i=1

{
xbα(i)(1+Ri)

} = 0 .

The second partial derivatives of the log-likelihood equation are obtained as follows:

∂2l(α, β |x)
∂α2

= − r

α2
− β

r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)2}− β Cα ln(C)2RT ,(2.6)

∂2l(α, β |x)
∂α ∂β

= −
r∑
i=1

{
(1+Ri) xα(i) ln

(
x(i)

)}
− Cα ln(C)RT ,(2.7)

∂2l(α, β |x)
∂β2

=
−r
β2

.(2.8)

Now, using Equations (2.6)–(2.8), the Fisher’s information matrix I(α, β) can be formed
by

I(α, β) = E

−
∂2l(α, β |x)

∂α2
−∂

2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂β2

.(2.9)

It is well-known that (see [27]) the distribution of MLEs
(
α̂, β̂

)
is a bivariate normal distri-

bution with
N
(
(α, β), I−1(α, β)

)
,

where I−1(α, β) is the covariance matrix. Moreover, one can approximate the covariance
matrix evaluated at

(
α̂, β̂

)
by the following observed information matrix:

I
(
α̂, β̂

)
=

−
∂2l(α, β |x)

∂α2
−∂

2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂α ∂β

−∂
2l(α, β |x)
∂β2


(bα,bβ)

.(2.10)
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2.1. Expectation-Maximization algorithm

The EM algorithm proposed by Dempster et al. [16] can be used to obtain the MLEs
of the parameters α and β. It is known that the EM algorithm converges more reliably
than NR. Since type-I PHCS can be considered as an incomplete data problem (see [33]),
it is possible to apply EM algorithm to obtain the MLEs of the parameters. Now, let us
denote the incomplete (censored) data by Z = (Z1, Z2, ..., Zr) where Zj =

(
Zj1, Zj2, ..., ZjRj

)
,

j = 1, 2, ..., r, such that Zj denotes the lifetimes of censored units at the time of x(j). Similarly,
let ZT denotes the lifetimes of censored units at the time of T . Now, combining both the
observed and censored data, one can obtain the complete data which is given by W = (X,Z).
The corresponding likelihood equation of the complete data can be obtained as follows:

LW (α, β |x) =
r∏
i=1

{
f
(
x(i);α, β

) Ri∏
j=1

f
(
zij ;α, β

)} RT∏
j=1

f
(
zTj ;α, β

)
.(2.11)

Therefore, the log-likelihood equation can be easily obtained by taking the natural logarithm
of Equation (2.11) as follows:

lW (α, β |x) = ln
(
LW (α, β |x)

)
=

r∑
i=1

ln
(
αβxα−1

(i) exp
{
−βxα(i)

})
+

r∑
i=1

Ri∑
j=1

ln
(
αβzα−1

ij exp
{
−βzαij

})
+

RT∑
j=1

ln
(
αβzα−1

Tj exp
{
−βzαTj

})

= n lnα+ n lnβ + (α− 1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) + (α− 1)
r∑
i=1

Ri∑
j=1

ln(zij)

− β

r∑
i=1

Ri∑
j=1

zαij + (α− 1)
RT∑

j=1,r 6=m
ln(zTj)− β

RT∑
j=1,r 6=m

zαTj .(2.12)

Note that the last two terms of Equation (2.12), should be considered only for the Case II.
Based on the complete sample, the MLEs of the parameters α and β can be obtained by
taking the derivatives of (2.12) with respect to α and β respectively and equating them to
zero as follows:

∂lW (α, β |x)
∂α

=
n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

ln(zij)

− β

r∑
i=1

Ri∑
j=1

zαij ln(zij) +
RT∑

j=1,r 6=m
ln(zTj)− β

RT∑
j=1,r 6=m

zαTj ln(zTj) = 0 ,(2.13)

∂lW (α, β |x)
∂β

=
n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

zαij −
RT∑

j=1,r 6=m
zαTj = 0 .(2.14)

Now, the conditional expectation of the log-likelihood equation of the complete data given
the observations should be computed in the E-step of the algorithm. However, the following
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conditional expectations are necessary to be computed:

E

(
∂lW (α, β |x)

∂α

∣∣∣x(i), T

)
=

n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

E
[
ln(Zij)

(
1− βZαij

) ∣∣∣Zij > x(i)

]

+
RT∑

j=1,r 6=m
E
[
ln(ZTj)

(
1− βZαTj

) ∣∣∣ZTj > T
]
,(2.15)

E

(
∂lW (β, β |x)

∂β

∣∣∣x(i), T

)
=

n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

E
[
Zαij

∣∣∣Zij > x(i)

]

−
RT∑

j=1,r 6=m
E
[
ZαTj

∣∣∣ZTj > T
]
.(2.16)

In order to compute the expectations given above, making use of the theorem proved in [33],
the conditional probability function of the censored data given the observed data can be
obtained as follows:

f
(
zi | C∗, α, β

)
=

f(zi, α, β)
1− F (C∗, α, β)

, Zi > C∗ ,(2.17)

such that C∗ = x(i) for i = 1, 2, ..., r and C∗ = T for i = T . Thus, the following expectations
can be obtained:

E1(C∗, α, β) = E
[
Zα
∣∣∣Z > C∗

]
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tαf(t) dt

=
e−βC

∗α

1− F (C∗, α, β)
(1 + βC∗α)

β
,(2.18)

E2(C∗, α, β) = E
(
ln(Z) (1− βZα)

∣∣∣Z > C∗
)

=
1

1− F (C∗, α, β)

∫ ∞

C∗
ln(t) (1− βtα) f(t) dt .(2.19)

Since it is hard to obtain a closed form solution to Equation (2.19), the integral is approx-
imated via Monte Carlo integration method in the simulation. After updating the missing
data with the expectations above in the E-step, the log-likelihood function is maximized in
the M-step at the current state, say α̂k and β̂k being the estimators of α and β and the
following updating equations are computed:

α̂k+1 = n

{
−

r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xbαk

(i) ln
(
x(i)

)
−

r∑
i=1

RiE2

(
x(i), α̂k, β̂k+1

)
− RTE2

(
T, α̂k, β̂k+1

)}−1

,(2.20)

β̂k+1 = n

{
r∑
i=1

xbαk

(i) +
r∑
i=1

RiE1

(
x(i), α̂k, β̂k

)
+RTE1

(
T, α̂k, β̂k

)}−1

.(2.21)

The EM estimates of (α, β) can be computed by an iterative procedure using Equation (2.21)
and the iterations can be terminated when |α̂k+1 − αk|+ |β̂k+1 − βk| < ε where ε > 0 is
a small real number.
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2.2. Stochastic Expectation-Maximization algorithm

The computations in the E-step of EM algorithm is complex. Therefore, Wei and Tan-
ner [46] proposed a Monte Carlo version of EM algorithm. However, the M-step of this algo-
rithm may take so much time. Diebolt and Celeux [18] introduced a stochastic-EM (SEM)
algorithm by considering simulated values from the conditional distribution. Asl et al. [4]
used this algorithm successfully. In the SEM algorithm, firstly, one needs to generate
Ri number of samples of zij where i= 1, 2, ..., r and j = 1, 2, ..., Ri using the following condi-
tional CDF:

F
(
zij ;α, β | zij > x(i)

)
=

F (zij ;α, β)− F
(
x(i);α, β

)
1− F

(
x(i);α, β

) , zij > x(i) .(2.22)

Now, using Equations (2.13) and (2.14), the estimators of (α, β) at the k + 1 step of the
algorithm can be obtained as follows:

α̂k+1 = n

− r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xbαk

(i) ln
(
x(i)

)
−

r∑
i=1

Ri∑
j=1

ln(zij)
(
1− β̂k+1z

bαk
ij

)

−
RT∑

j=1,r 6=m
ln(zTj)

(
1− β̂k+1z

bαk
Tj

)−1

,(2.23)

β̂k+1 = n

 r∑
i=1

xbαk

(i) +
r∑
i=1

Ri∑
j=1

zbαk
ij +

RT∑
j=1,r 6=m

zbαk
Tj

−1

.(2.24)

Similarly, the iterations can be terminated when |α̂k+1 −αk|+ |β̂k+1 − βk| < ε where ε > 0 is
a small real number.

2.3. Fisher information matrix

In this subsection, by making use of the idea of missing information principle proposed
by Louis [31], we can obtain the observed Fisher information matrix. Louis [31] suggested
the following relation:

IX(ψ) = IW (ψ)− IW |X(ψ) ,(2.25)

where ψ = (α, β)′, IX(ψ), IW (ψ) and IW |X(ψ) are the observed, complete and missing infor-
mation matrices respectively. Now, the complete information matrix of a complete data set
following the Weibull distribution can be obtained as

IW (ψ) = −E
(
∂2 lnL
∂ψ2

)
= E

[
n
α2 + β

∑n
i=1 x

α
i

∑n
i=1 x

α
i lnxi∑n

i=1 x
α
i lnxi n

β2

]
=

[
b11 b12

b21 b22

]
,(2.26)
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where

b11 =
n

α2
+ nαβ2

∫ ∞

0

x2α−1 ln(x)
exp(βxα)

dx ,

b12 = b21 = nαβ

∫ ∞

0

x2α−1 ln(x)
exp(βxα)

dx ,

b22 =
n

β2
,

and lnL(ψ) = n lnα+n lnβ+ (α−1)
∑n

i=1xi + β
∑n

i=1x
α
i is the corresponding log-likelihood

equation. Moreover, the missing information matrix IW |X(ψ) is given by

(2.27) IW |X(ψ) =
r∑
i=1

Ri I
(i)
W |X(ψ) +RT I∗W |X(ψ) ,

where I(i)
W |X(ψ) and I∗W |X(ψ) are the information matrices of a single observation from a

truncated Weibull distribution from left at x(i) and T respectively, such that

I(i)
W |X(ψ) = −E

(
∂2 lnL
∂ψ2

ln
{
f
(
zij ;ψ | zij > x(i)

)})
.

Now to calculate the missing information matrix I(i)
W |X(ψ), the conditional distribution given

in Equation (2.17) is used to obtain the following

Lf = ln
(
f
(
zij | zij > x(i)

))
= ln(α) + ln(β) + (α−1) ln(zij)− βzαij + βxα(i) .

The second partial derivatives of Lf are obtained as follows:

∂2Lf
∂α2

= − 1
α2

− βzαij ln(zij)2 + βxα(i) ln(x(i))
2 ,

∂2Lf
∂α ∂β

= −zαij ln(zij) + xα(i) ln(x(i)) ,

∂2Lf
∂β2

= − 1
β2

.

Now, in order to obtain the information matrices, the negative expected values of the quan-
tities above are computed respectively as follows:

E

(
−
∂2Lf
∂α2

)
=

1
α2

+ βE4

(
x(i), α, β

)
− βxα(i) ln(x(i))

2 ,

E

(
−
∂2Lf
∂α ∂β

)
= E3

(
x(i), α, β

)
− xα(i) ln(x(i)) ,

E

(
−
∂2Lf
∂β2

)
=

1
β2

,

where

E3(C∗, α, β) = E
(
Zα ln(Z) |Z > C∗

)
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tα ln(t) f(t) dt ,

E4(C∗, α, β) = E
(
Zα ln(Z)2 |Z > C∗

)
=

1
1− F (C∗, α, β)

∫ ∞

C∗
tα ln(t)2f(t) dt .
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Using similar arguments, the information matrix I∗W |X(ψ) can also be computed easily.

Then, using (2.25)–(2.26), the asymptotic variance-covariance matrix of ψ̂ can be computed
by inverting the observed information matrix IX

(
ψ̂
)
. Note that ψ̂ is computed using the

NR estimates.

3. BAYESIAN ESTIMATION

In this section, following Kundu [25], we consider the Bayesian estimation for the pa-
rameters of the Weibull distribution under the assumption that the random variables α and
β have independent gamma priors such that α ∼ Gamma(a, b) and β ∼ Gamma(c, d). There-
fore, the joint prior density of α and β can be written as

π(α, β) ∝ αa−1βc−1exp
{
−(bα+ dβ)

}
, a, b, c, d > 0 .

Now, the posterior distribution of α and β can be obtained as follows:

π(α, β |x) =
L(α, β |x) π(α, β)∫ ∞

0

∫ ∞

0
L(α, β |x) π(α, β) dα dβ

=

(∏r
i=1 x

α−1
(i)

)
βc+r−1 αa+r−1

Γ(c+ r) Ψ(a, c,x)
exp

{
d− bα+

r∑
i=1

(1+Ri)xα(i) + CαRT

}
,(3.1)

where

Ψ(a, c,x) =
∫ ∞

0

αa+r−1 exp{−bα}
(∏r

i=1 x
α−1
(i)

)
[
d+

∑r
i=1(1+Ri)xα(i) + CαRT

]a+c+r dα .

In this paper, three different loss functions are considered. One of them is the most
commonly used squared error loss function (SEL) which is defined as follows:

LS
(
t̂(ψ), t(ψ)

)
=
(
t̂(ψ)− t(ψ)

)2
,

where t̂(ψ) is an estimator of t(ψ). SEL is a symmetric loss function which gives equal weights
to both underestimation and overestimation. However, in certain situation overestimation
and underestimation may have serious consequences ([37]). In such cases using SEL may not
be appropriate. One remedy is to use linear-exponential (LINEX) loss function. LINEX is
an asymmetric loss function introduced by Varian [45] as follows:

LL
(
t̂(ψ), t(ψ)

)
= eν(bt(ψ)−t(ψ)) − ν

(
t̂(ψ)− t(ψ)

)
− 1 , ν 6= 0 .

The LINEX loss function is a convex function whose shape is determined by the value of ν.
The negative (positive) value of ν gives more weight to overestimation (underestimation)
and its magnitude reflects the degree of asymmetry. It is seen that, for ν = 1, the function
is quite asymmetric with overestimation being costlier than underestimation. If ν < 0, it
rises almost exponentially when the estimation error t̂(ψ)− t(ψ) < 0 and almost linearly if
t̂(ψ)− t(ψ) > 0. For small values of |ν|, the LINEX loss function is almost symmetric and
not far from squared error loss function.
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Under the SEL function, the Bayes estimators of α and β which are the expected values
of the corresponding posterior distributions are computed respectively as follows:

α̂S = E
(
π(α |x)

)
=

Ψ(a+1, c−1,x)
Ψ(a, c,x)

(3.2)

and

β̂S = E
(
π(β |x)

)
= (a+ c+ r)

Ψ(a, c+1,x)
Ψ(a, c,x)

.(3.3)

Since the Bayes estimators given above includes the complicated integral function Ψ(a, c+1,x)
we also consider using the Bayes estimate of t(ψ) under the LINEX loss function is given by

t̂L(ψ) = −1
ν

ln
[
Et
(
e−νt(ψ) |x

)]
= −1

ν
ln
[∫ ∞

0

∫ ∞

0
e−νt(ψ)π(α, β |x) dα dβ

]
.

Another asymmetric loss function that gained more attention is the general entropy loss
(GEL) function given by

LGEL

(
t̂(ψ), t(ψ)

)
=

(
t̂(ψ)
t(ψ)

)κ
− κ ln

(
t̂(ψ)
t(ψ)

)
− 1 , κ 6= 0 ,

where κ is the shape parameter showing the departure from symmetry. When κ > 0, the
overestimation is considered to be more serious than underestimation and for κ < 0 vice
versa. The Bayes estimator under GEL function is given by

t̂GEL(ψ) =
[
Et
(
t(ψ)−κ |x

)]−1/κ
=
[∫ ∞

0

∫ ∞

0
t(ψ)−κπ(α, β |x) dα dβ

]−1/κ

.

3.1. Tierney–Kadane approximation

In this subsection, the approximation method of Tierney and Kadane [44] is used
to obtain the approximate Bayes estimators under SEL, LINEX and GEL loss functions.
Now, we consider the following functions:

∆(α, β) =
1
n

ln
[
L(α, β |x) π(α, β)

]
,(3.4)

∆∗(α, β) =
1
n

ln
[
L(α, β |x) π(α, β) t(ψ)

]
.(3.5)

Now assume that (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗) respectively maximize the functions ∆(α, β) and
∆∗(α, β). Then the approximation method of Tierney and Kadane [44] is given by

t̃SEL(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

where |Σ| and |Σ∗| are the negative of inverses the second derivative matrices of ∆(α, β)
and ∆∗

1(α, β) respectively obtained at (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗). The function ∆(α, β) can be
easily obtained by using the Equation (3.4) as follows:

∆(α, β) =
1
n

[
ln(M) + (α−1)

r∑
i=1

ln
(
x(i)

)
− β

(
d+ bα+

r∑
i=1

(1+Ri)xα(i) + CαRT

)

+ (a+ c+ r − 1) ln(β) + (a+ r − 1) ln(α)

]
,(3.6)
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where M = dcba

Γ(c) Γ(a) . Now, differentiating Equation (3.6) with respect to α and β solving for
these parameters, one gets the following equations:

α̃∆ = (a+ r − 1)

[
β

(
b+

r∑
i=1

(1+Ri)xα(i) + CαRT

)
−

r∑
i=1

ln
(
x(i)

)]−1

,

β̃∆ = (a+ c+ r − 1)

[
r∑
i=1

(1+Ri)xα(i) + CαRT + d+ bα

]−1

.

Since it is easy to obtain the second derivatives and the related Hessian matrices, we skip
this part. Thus under the SEL function, the approximate Bayes estimators are computed by

α̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

β̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

1β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

where ∆∗
1α(α, β) = ∆(α, β) + 1

n ln(α) for t(α, β) = α and ∆∗
1β(α, β) = ∆(α, β) + 1

n ln(β) for
t(α, β) = β.

One can also compute the Bayes estimators under the LINEX loss and get

t̃LINEX(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
{

∆∗
2

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

)}]
.

Letting t(α, β) = e−να, one gets ∆∗
2α(α, β) = ∆(α, β)− 1

n να and letting t(α, β) = e−νβ ,
∆∗

2β(α, β) = ∆(α, β)− 1
n νβ. Thus, approximate Bayes estimators under LINEX function

are computed as

α̃LINEX = −1
ν

ln

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

2α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
,

β̃LINEX = −1
ν

ln

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

2β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
.

Finally, letting t(α, β) = α−κ, one gets ∆∗
3α(α, β) = ∆(α, β)− κ

n ln(α) and letting
t(α, β) = β−κ, ∆∗

3β(α, β) = ∆(α, β)− κ
n ln(β). Thus, approximate Bayes estimators under

GEL function are obtained by

α̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

3α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

,

β̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(
∆∗

3β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

.

3.2. MCMC method

Metropolis–Hastings (MH) algorithm, a method for generating random samples from
the posterior distribution using a proposal density, is considered in this subsection. A sym-
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metric proposal density of type q(θ′ |θ) = q(θ|θ′) may be considered generally, where θ is the
parameter vector of the distribution considered. Following Dey et al. [17], we consider a
bivariate normal distribution as the proposal density such that q(θ′ |θ) = N(θ|Vθ) where Vθ

is the covariance matrix and θ = (α, β). Although, the bivariate normal distribution may
generate negative observations, the domain of both shape and scale parameters of Weibull
distribution is positive. Therefore, the following steps of MH algorithm is used to generate
MCMC sample from the posterior density given by (3.1):

(1) Set the initial parameter values as θ = θ0.

(2) For j = 1, 2, ..., N , repeat the following steps:

(i) Set θ = θj−1;
(ii) Generate new parameters λ from bivariate normal N2

(
ln(θ),Vθ

)
;

(iii) Compute θnew = exp(λ);

(iv) Calculate γ = min
(
1, π(θnew |x) θnew

π(θ |x) θ

)
;

(v) Set θj = θnew with probability λ, otherwise θj = θ.

After generating the MCMC sample, some of the initial samples, say N0, can be discarded as
burn-in process and the estimations can be computed via the remaining ones (M = N −N0)
under SEL, LINEX and GEL loss functions as follows:

t̂SEL(ψ) =
1
M

M∑
i=1

t(ψi) ,

t̂LINEX(ψ) = −1
ν

ln

(
1
M

M∑
i=1

exp
(
−ν t(ψi)

))
,

t̂GEL(ψ) =

(
1
M

M∑
i=1

(
t(ψi)−κ

))−1/κ

.

The main advantage of MCMC method over Tierney–Kadane method is that the MCMC sam-
ples can also be used to compute highest posterior density (HPD) intervals. Chen and Shao
[14] proposed a method to compute the HPD intervals using MCMC samples. This method
has been used in the literature extensively. Now, consider the posterior density π(θ|x).
Assume that the p-th quantile of the distribution is given by θ(p)= inf

{
θ : Π(θ|x)≥ p; 0<p<1

}
where Π(θ|x) denotes the posterior distribution function of θ. Now, for a given θ∗, a simula-
tion consistent estimator of Π(θ∗|x) can be computed as

Π(θ∗|x) =
1
M

M∑
i=1

I(θ ≤ θ∗) ,

where I(θ ≤ θ∗) is an indicator function. Then, the estimate of Π(θ∗|x) is given as

Π̂(θ∗|x) =


0 if θ∗<θ(N0) ,∑i

j=N0
γj if θ(i)<θ∗<θ(i+1) ,

1 if θ(M) ,

where γj = 1/M and θ(j) is the j-th ordered value of θj . θ(p) can be approximated by the
following:

θ(p) =

{
θ(N0) if p = 0 ,

θ(j) if
∑i−1

j=N0
γj < p <

∑i
j=N0

γj .
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Now, one can construct the 100 (1 − p)% confidence intervals where 0 < p < 1 as(
θ̂j/s, θ̂(j+[(1−p)s])/s), j = 1, 2, ..., s− [(1− p)s] such that [v] denotes the greatest integer less

than or equal to v. At the end, the HPD credible interval of θ is the one having the shortest
length.

4. SHRINKAGE ESTIMATION

In the problem of statistical inference there may be some non-sample prior information
that practitioner may have from previous experiences or knowledge Saleh [39]. For example,
medical experts may know the average time of that a vaccine may take to relief a pain
according their medical knowledge. This non-sample Prior information on the parameters in a
statistical model generally leads to an improved inference procedure in problems of statistical
inference. Restricted models arise from the incorporation of the known prior information in
the model in the form of a constraint. The estimators obtained from restricted (unrestricted)
model is known as the restricted (unrestricted) estimators. The results of an analysis of the
restricted and unrestricted models can be weighted against loss of efficiency and validity of
the constraints in deciding a choice between these two extreme inference methods, when a
full confidence may not be in the prior information (see [2]).

Bancroft [11] was the first to consider a pre-test procedure when there is doubt that the
prior information is not certain (uncertain prior information). After the pioneering study [11],
pre-test estimators has gained much attention. Thompson [43] defined an efficient shrinkage
estimator. Following [43], shrinkage estimation of the Weibull parameters has been discussed
by a number of authors, including [41], [35], [36] and [42]. We also refer to the following book
and papers among others: [22], [40], [39], [23].

Now suppose that there is an uncertain prior information in the form of θ= θ0 where θ is
the parameter of a distribution of interest. Our aim is to estimate θ using a pre-test estimation
strategy and this prior information. Therefore, we consider the following hypothesis to check
the validity of this information:

H0 : θ = θ0 ,

H1 : θ 6= θ0 .

It is known that under H0, the asymptotic distribution of
√
D
(
θ̂−θ0

)
is normal with N(0, σ2

bθ
)

and the related test statistics can be defined as follows:

WD =

(√
D
(
θ̂ − θ0

)
σ
bθ

)2

.

One can reject the null hypothesis when WD > χ2
1(λ) based on the distribution of WD where

λ can be treated as the degree of trust in the prior information about the parameter such
that θ = θ0, see [39] and [1]. Thus, the shrinkage pre-test estimator (SPT) can be defined as:

θ̂SPT = λθ0 + (1−λ) θ̂ I
(
WD <χ

2
1(λ)

)
,

where I(A) is the indicator of the set A.



576 Y. Asar and R.A. Belaghi

5. MONTE CARLO SIMULATION EXPERIMENTS

In this section, we conduct a simulation study to illustrate the performance of the dif-
ferent estimation techniques discussed in this paper by considering (n,m) = (30, 15), different
values of predetermined time T = 1.0, 2.0, and the real values of the parameters are chosen as
α = 0.5 and β = 1.5 in all cases. The following three schemes are considered in the simulation:

• Scheme 1: R = (0m−1, n−m);

• Scheme 2: R = (n−m, 0m−1);

• Scheme 3: R = (25, 0m−6, n−m− 10).

It is noted that Scheme 1 is the type-II censoring such that n−m units are removed from
the experiment at the time of the m-th failure; in Scheme 2, n−m units are removed at
the time of the first failure. However, in Scheme 3, a progressive type-II censoring scheme
allowing different numbers of censoring within the experiment is considered. The progressive
type-II censored data from Weibull distribution is generated using algorithm proposed by
Balakrishnan and Aggarwala [7]. The maximum likelihood estimators of α and β are obtained
using NR, EM and SEM algorithms. In computing the Bayes estimates, two different priors
are used such as the non-informative priors as a = b = c = d = 0 and the informative priors
where we assume that we have past samples from Weibull(α, β) distribution, say K samples
and their corresponding MLEs as

(
α̂j , β̂j

)
, j = 1, 2, ...,K. Now, equating the sample means

and variances of these values to the means and variances of gamma priors respectively and
solving the equations for K = 1000, and n = 30 being the sample size of past samples, we
obtain the following informative prior values, a = 43.77, b = 83.45, c = 24.24, d = 15.47.

Bayes estimates are computed under SEL, LINEX, GEL loss functions. Notice that
for the LINEX loss function, we considered two values of ν as ν = −0.5, 0.5 giving more
weight to underestimation and overestimation respectively. Similarly, two choices of κ such as
κ = −0.5, 0.5 are taken into account under GEL function. Moreover, 6000 MCMC samples are
generated and MCMC estimations are computed under the listed loss function and respective
parameter values. The first 1000 MCMC samples are considered as a burn-in sample so that
the average values and MSEs are computed via the remaining 5000 samples for each replicate
in the simulation.

For the shrinkage estimators, the test statistic WD is calculated and then shrinkage pre-
test (SPT) estimators are obtained. The distribution of the test statistic WD is computed
under the null hypothesis, that is, H0 : θ = θ0. Moreover, we take λ = 0.5 giving equal weight
to both restricted and unrestricted estimators and the type one test error is set to 0.05 in
testing the hypothesis, prior values of the parameters are taken as α0 = 0.7, β0 = 1.7 for
practical purposes. The MLE shrinkage pre-test estimators are obtained using NR algorithm
and also the Bayes estimator with T–K method under different loss functions.

Totally, 5000 repetitions are carried out and average values (Avg), mean squared errors
(MSE), confidence/ credible interval lengths (IL) and coverage probabilities (CP) are obtained
for the purpose of comparison. MSEs of the estimators are computed as follows:

MSE
(
θ̂
)

=
1

5000

5000∑
i=1

(
θ̂i − θ

)2
,
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where θ̂i is NR, EM, SEM, SPT estimators and Bayes estimators under SEL loss function
in the i-th replication. However, the MSEs of Bayes estimators under LINEX and GEL loss
functions are computed respectively by

MSELINEX

(
θ̂
)

=
1

5000

5000∑
i=1

(
eν(

bθi−θ) − ν
(
θ̂i − θ

)
− 1
)

,

MSEGEL

(
θ̂
)

=
1

5000

5000∑
i=1

((
θ̂i
θ

)κ
− κ ln

(
θ̂i
θ

)
− 1

)
.

All of the computations are performed using the R Statistical Program [38]. All the results
are presented in Tables 1–5.

Based on Table 1, we can conclude that EM and SEM estimates are quiet preferable
to the NR method for all schemes and T s. Both MSEs and Avgs for EM and SEM estimates
are the close to each other and they are smaller than those of NR method. We also observe
that as m increase, the values of MSEs and Avgs decrease, generally.

The results of Bayes estimates based on TK and MCMC methods are reported in Tables
2–3. From these tables, it is evident that all the Bayes estimates based on informative priors
have very small MSEs compared to the MLEs. We also see that the Bayes estimates based
on informative priors are better than those that are based on non-informative priors in all
schemes and (T, n,m)s. However, EM and SEM estimates are better than non-informative
Bayes estimates based on SEL in terms of MSE and Avg. So we can conclude that Bayes
estimates even with non informative priors are preferable to the NR, for all schemes and T s.
When we compare MSEs of T–K and MCMC methods, we observed that they are generally
close to each other. However, T–K is better in some of the cases and vice versa in some others.
However, the MCMC has the advantage of construction of the credible intervals. Thus, we
can say that MCMC is preferable since it gives more information.

The performances of SPT estimators are given in Table 4. According to Table 4, we can
say that SPT estimators based on informative T–K method have better performance than
SPT based on NR methods in the sense of both MSE and Avg, generally. Moreover, SPT
with T–K method based on GEL function seems to have the least MSE values among others.
SPT estimator based on NR method has smaller MSE values than NR estimator when we
consider the parameter β, and both methods have closer MSE values for the parameter α.

Finally, the confidence intervals and coverage probabilities are summarized in Table 5.
It is observed that when we use non-informative priors the estimated CPs are smaller than
the nominal CPs. Moreover, the expected ILs of non-informative methods are less than that
of NR method. However, the estimated CPs of NR are slightly more than the non-informative
method. Further, we observe that the CIs based on informative priors are better than the
ones based on the non-informative priors and the once based on NR, in terms of having
smaller ILs but higher CPs.
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Table 1: Average values (Avg) and the corresponding MSEs
of the estimators NR, EM and SEM.

NR EM SEM
T R

α β α β α β

1
Avg 0.5559 1.8433 0.5276 1.6415 0.5352 1.6669
MSE 0.0224 0.6931 0.0112 0.2207 0.0139 0.2788

1 2
Avg 0.5279 1.6480 0.5239 1.5958 0.5294 1.6065
MSE 0.0158 0.3385 0.0135 0.1772 0.0141 0.1946

3
Avg 0.5435 1.7540 0.5315 1.6490 0.5330 1.6485
MSE 0.0175 0.5108 0.0127 0.2552 0.0131 0.2647

1
Avg 0.5559 1.8433 0.5276 1.6416 0.5353 1.6670
MSE 0.0224 0.6930 0.0112 0.2206 0.0139 0.2788

2 2
Avg 0.5280 1.6412 0.5233 1.5947 0.5287 1.6020
MSE 0.0137 0.3045 0.0124 0.1723 0.0129 0.1869

3
Avg 0.5476 1.7676 0.5339 1.6578 0.5353 1.6567
MSE 0.0172 0.5001 0.0126 0.2494 0.0130 0.2593

Table 2: Average values (Avg) and the corresponding MSEs
of the Bayes estimators with T–K approximation.

SEL
LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5T R

α β α β α β α β α β

Informative Priors

1
Avg 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

1 2
Avg 0.5199 1.5632 0.5209 1.5807 0.5189 1.5460 0.5180 1.5522 0.5141 1.5302
MSE 0.0018 0.0252 0.0002 0.0034 0.0002 0.0029 0.0008 0.0012 0.0007 0.0012

3
Avg 0.5206 1.5702 0.5215 1.5869 0.5196 1.5537 0.5188 1.5598 0.5151 1.5389
MSE 0.0019 0.0273 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

1
Avg.3 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

2 2
Avg 0.5193 1.5605 0.5203 1.5772 0.5183 1.5442 0.5175 1.5501 0.5137 1.5291
MSE 0.0018 0.0268 0.0002 0.0036 0.0002 0.0031 0.0008 0.0013 0.0008 0.0013

3
Avg 0.5210 1.5719 0.5220 1.5885 0.5200 1.5554 0.5192 1.5615 0.5156 1.5408
MSE 0.0019 0.0271 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

Non-Informative Priors

1
Avg 0.5519 1.8793 0.5441 1.9056 0.5353 1.6135 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7592 0.0022 0.0746 0.0022 0.0329 0.0083 0.0243 0.0086 0.0250

1 2
Avg 0.5298 1.6345 0.5322 1.7031 0.5248 1.5557 0.5234 1.5990 0.5100 1.5181
MSE 0.0159 0.3310 0.0020 0.0425 0.0019 0.0355 0.0065 0.0140 0.0067 0.0144

3
Avg 0.5411 1.7500 0.5408 1.8062 0.5341 1.6223 0.5384 1.7550 0.5262 1.6597
MSE 0.0170 0.5159 0.0020 0.0582 0.0020 0.0402 0.0065 0.0166 0.0067 0.0172

1
Avg 0.5519 1.8793 0.5441 1.9057 0.5353 1.6136 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7591 0.0022 0.0746 0.0021 0.0329 0.0083 0.0243 0.0086 0.0250

2 2
Avg 0.5290 1.6203 0.5315 1.6773 0.5254 1.5573 0.5237 1.5920 0.5125 1.5253
MSE 0.0137 0.2934 0.0017 0.0366 0.0017 0.0322 0.0056 0.0118 0.0057 0.0122

3
Avg 0.5453 1.7632 0.5451 1.8196 0.5384 1.6361 0.5427 1.7685 0.5307 1.6741
MSE 0.0167 0.5052 0.0020 0.0568 0.0020 0.0389 0.0062 0.0152 0.0064 0.0159
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Table 3: Average values (Avg) and the corresponding MSEs
of the Bayes estimators with MCMC method.

SEL
LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5T R

α β α β α β α β α β

Informative Priors

1
Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5448
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

1 2
Avg 0.5199 1.5631 0.5209 1.5806 0.5188 1.5462 0.5179 1.5522 0.5140 1.5304
MSE 0.0018 0.0253 0.0002 0.0037 0.0002 0.0029 0.0009 0.0014 0.0008 0.0012

3
Avg 0.5206 1.5703 0.5216 1.5871 0.5197 1.5540 0.5188 1.5599 0.5151 1.5391
MSE 0.0019 0.0277 0.0002 0.0041 0.0002 0.0032 0.0009 0.0016 0.0008 0.0013

1
Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5449
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

2 2
Avg 0.5193 1.5604 0.5203 1.5770 0.5183 1.5442 0.5174 1.5500 0.5137 1.5292
MSE 0.0018 0.0271 0.0002 0.0039 0.0002 0.0031 0.0009 0.0015 0.0008 0.0013

3
Avg 0.5210 1.5720 0.5220 1.5887 0.5201 1.5558 0.5192 1.5617 0.5156 1.5410
MSE 0.0019 0.0275 0.0002 0.0040 0.0002 0.0031 0.0009 0.0016 0.0009 0.0013

Non-Informative Priors

1
Avg 0.5411 1.7748 0.5455 1.9792 0.5368 1.6503 0.5335 1.7117 0.5180 1.5932
MSE 0.0176 0.4644 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0121

1 2
Avg 0.5286 1.6289 0.5323 1.7081 0.5249 1.5607 0.5219 1.5890 0.5086 1.5091
MSE 0.0158 0.3208 0.0021 0.0665 0.0020 0.0370 0.0069 0.0159 0.0066 0.0127

3
Avg 0.5380 1.7158 0.5414 1.8220 0.5346 1.6347 0.5320 1.6738 0.5199 1.5910
MSE 0.0161 0.4175 0.0022 0.1139 0.0020 0.0445 0.0067 0.0201 0.0063 0.0127

1
Avg 0.5411 1.7748 0.5455 1.9793 0.5368 1.6504 0.5335 1.7117 0.5180 1.5933
MSE 0.0176 0.4643 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0120

2 2
Avg 0.5280 1.6166 0.5311 1.6804 0.5249 1.5604 0.5224 1.5839 0.5112 1.5181
MSE 0.0136 0.2856 0.0018 0.0582 0.0017 0.0338 0.0059 0.0137 0.0057 0.0110

3
Avg 0.5422 1.7293 0.5455 1.8353 0.5389 1.6483 0.5363 1.6876 0.5245 1.6057
MSE 0.0159 0.4065 0.0021 0.1128 0.0020 0.0432 0.0065 0.0192 0.0061 0.0117

Table 4: Average values (Avg) and the corresponding MSEs
of the SPT estimators.

NR SEL LINEX GEL
T R

α β α β α β α β

1
Avg 0.5911 1.8251 0.5879 1.6367 0.5870 1.6278 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

1 2
Avg 0.5576 1.6367 0.5771 1.6301 0.5759 1.6212 0.5708 1.6131
MSE 0.0190 0.1464 0.0104 0.0233 0.0102 0.0210 0.0097 0.0193

3
Avg 0.5708 1.7106 0.5749 1.6329 0.5738 1.6244 0.5690 1.6166
MSE 0.0205 0.2600 0.0102 0.0247 0.0101 0.0224 0.0096 0.0208

1
Avg 0.5911 1.8252 0.5879 1.6367 0.5870 1.6279 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

2 2
Avg 0.5556 1.6352 0.5698 1.6274 0.5686 1.6189 0.5631 1.6108
MSE 0.0173 0.1323 0.0097 0.0239 0.0095 0.0218 0.0090 0.0203

3
Avg 0.5750 1.7253 0.5750 1.6335 0.5738 1.6249 0.5689 1.6170
MSE 0.0204 0.2508 0.0102 0.0249 0.0101 0.0227 0.0096 0.0211
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Table 5: Confidence intervals and coverage probabilities of NR and MCMC methods.
(U: upper, L: lower, IL: interval length, CP: coverage probability.)

NR MCMC: Informative MCMC: Non-Informative
T R

L U IL CP L U IL CP L U IL CP

1
α 0.2952 0.8166 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90
β 0.4102 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7989 3.4874 2.6885 92.80

1 2
α 0.2972 0.7585 0.4614 95.02 0.4027 0.6526 0.2498 99.88 0.3232 0.7854 0.4622 94.64
β 0.6301 2.6658 2.0357 95.78 1.0944 2.1159 1.0215 99.98 0.7981 2.7963 1.9982 94.52

3
α 0.3203 0.7668 0.4466 94.58 0.4067 0.6481 0.2414 99.90 0.3371 0.7796 0.4424 93.50
β 0.6540 2.8541 2.2001 96.38 1.1111 2.1114 1.0003 99.96 0.8604 2.9774 2.1170 92.98

1
α 0.2952 0.8167 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90
β 0.4103 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7990 3.4875 2.6885 92.80

2 2
α 0.3161 0.7400 0.4239 94.92 0.4044 0.6491 0.2447 99.66 0.3375 0.7609 0.4235 94.30
β 0.7199 2.5624 1.8426 95.68 1.1020 2.0980 0.9959 99.88 0.8484 2.6496 1.8013 93.82

3
α 0.3258 0.7695 0.4436 94.86 0.4074 0.6481 0.2407 99.86 0.3424 0.7820 0.4396 93.72
β 0.6702 2.8649 2.1947 97.20 1.1140 2.1110 0.9970 99.86 0.8740 2.9859 2.1119 93.46

6. REAL DATA EXAMPLE

We consider a data set reported by [5] representing the strength measured in GigaPAscal
(GPA) for single carbon fibres, and impregnated 1000-carbon fibre tows. Single fibres were
tested under tension at gauge lengths of 10 mm. This data was analyzed by [3] considering a
hybrid censoring scheme for the Weibull distribution. Following [3], we analyze this data set
using two-parameter Weibull distribution after subtracting 1.75. The authors recorded that
the validity of the Weibull model based on the Kolmogorov–Smirnov (K–S) test is full-filled,
namely, K–S=0.072 and p-value =0.885.

To compute the Bayes estimates, since we have no prior information about the unknown
parameters, we assume the non-informative priors by setting a= b= c= d= 0. Takingm= 40
and T = 2, we use the following schemes:

• Scheme 1: R = (039, 23);

• Scheme 2: R = (23, 039);

• Scheme 3: R = (2, 010, 23, 010, 23, 010, 33).

We have produced 60000 MCMC samples and the first 10000 of them are considered
as the burn-in sample. We have provided the histograms of the samples for each parameter
in Figures 1–2 and also some diagnostics showing the efficiency of the MCMC algorithm in
Figures 3–5. The acceptance rate after the burn-in sample is close to 0.36 and it is stable.
Therefore, it can be said that the MCMC algorithm works well.

In SPT estimates, since we don’t have any prior information about parameters, we
use the Bayes estimates as an estimated prior information. Then we substitute them in the
SPT formulae as θ̂SPT = λθ0 + (1−λ) θ̂Bayes I

(
WD <χ

2
1(λ)

)
by setting λ = 0.5 and α = 0.05.
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All the estimation methods considered in this paper are applied to this data and the
estimated parameter values are reported in Table 6. We observe that the estimated values
of α and β based on all the methods are closer to each other. Further, it can be seen that
the Bayes estimates based on the two different methods are quite closer to each other which
also show the stability of the MCMC algorithm. Moreover, asymptotic confidence intervals
of NR method and HPD intervals of MCMC method are given in Table 7. According to this
table, we can say that NR confidence intervals are mostly wider than the ones obtained via
MCMC. This situation is also coincident with the simulation results.
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Figure 1: Histogram of the MCMC samples of the parameter α.
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Figure 2: Histogram of the MCMC samples of the parameter β.
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Figure 3: MCMC samples of the parameter α vs iterations.
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Figure 4: MCMC samples of the parameter β vs iterations.
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Figure 5: Acceptance rate of MCMC samples.
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Table 6: Estimation values of listed methods for Carbon Fibre data.

Scheme 1 Scheme 2 Scheme 3

α β α β α β

MLE Method

NR 2.2542 0.3980 2.3058 0.3918 2.1169 0.3884
EM 2.2641 0.3975 2.2952 0.3986 2.1128 0.3908
SEM 2.2515 0.3981 2.3046 0.3922 2.1304 0.3892

Tierney–Kadane Method

SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX (ν =−0.5) 2.2764 0.4005 2.3310 0.3963 2.1303 0.3914
LINEX (ν = 0.5) 2.2260 0.3978 2.2793 0.3924 2.0915 0.3885
GEL (κ =−0.5) 2.2393 0.3958 2.2929 0.3893 2.1012 0.3863
GEL (κ = 0.5) 2.2169 0.3890 2.2704 0.3793 2.0827 0.3792

MCMC Method

SEL 2.2496 0.3980 2.3042 0.3933 2.1028 0.3915
LINEX (ν =−0.5) 2.2735 0.3994 2.3288 0.3953 2.1232 0.3929
LINEX (ν = 0.5) 2.2261 0.3967 2.2802 0.3914 2.0828 0.3900
GEL (κ =−0.5) 2.2390 0.3947 2.2937 0.3885 2.0932 0.3878
GEL (κ = 0.5) 2.2176 0.3880 2.2725 0.3788 2.0739 0.3805

Shrinkage Method

NR 2.2524 0.3985 2.3049 0.3930 2.1137 0.3892
SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX (ν = 0.5) 2.2634 0.3998 2.3175 0.3953 2.1204 0.3906
GEL (κ = 0.5) 2.2449 0.3974 2.2985 0.3917 2.1058 0.3881

Table 7: Confident intervals and interval lengths of NR and MCMC methods
for Carbon Fibre data (U: upper, L: lower, IL: interval length).

α β
Scheme Method

L U IL L U IL

1
NR 1.6321 2.8764 1.2443 0.2539 0.5420 0.2880
MCMC 1.6668 2.8725 1.2057 0.2682 0.5540 0.2857

2
NR 1.6740 2.9376 1.2636 0.2175 0.5660 0.3485
MCMC 1.7418 2.9404 1.1986 0.2408 0.5834 0.3426

3
NR 1.5703 2.6636 1.0933 0.2417 0.5351 0.2933
MCMC 1.5744 2.6737 1.0993 0.2584 0.5558 0.2974

7. CONCLUSIVE REMARKS

In this paper, we discussed the estimation of parameters of Weibull distribution un-
der type-I progressively hybrid censoring scheme using both classical and Bayesian strategies.
Namely, MLE is obtained using NR, EM and SEM algorithms and Bayesian estimators are com-
puted via T–K approximation and MCMC method under SEL, LINEX and GEL loss functions.
We have also proposed the shrinkage preliminary test estimators based on NR and T–K with
informative priors using equal weights on the prior information and the sample information.
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A real data application and extensive Monte Carlo simulations have been considered to com-
pare the estimators in terms of MSE and Avg and also we compared the lengths of CIs and
CPs. According to the results, EM algorithm beats the other ML estimates. However, we
observed that both the T–K and MCMC methods perform quite closely. Finally, we found
out that shrinkage preliminary test estimates have satisfactory performances in the presence
of having proper prior information.
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1. INTRODUCTION

Cancer is the name given to a set of more than 100 diseases that have in common the
disordered growth of cells, which invade tissues and organs. Dividing rapidly, these cells tend
to be very aggressive and uncontrollable, determining the formation (carcinogenesis process)
of malignant tumors, which can spread to other regions of the body. The carcinogenesis
process (cancer formation), in general, occurs slowly and may take several years for a cancer
cell proliferate and give rise to a visible tumor. That process goes through several stages
(initiation of a tumor, promotion and progression) before reaching the tumor. Statistics
show that cancer is one of the most important public health concern around the world and
for this reason it is crucial to estimate its prevalence, incidence, and mortality/survival rates
[17]. An overview of descriptive cancer data on this disease is a first step to appreciate control
measures and preventive interventions in a global context of progressive cancer burden [21].

Cutaneous malignant melanoma, a type of skin cancer that originates in melanocytes
(cells that produce melanin, a substance that determines skin color), is a tumor whose inci-
dence is increasing dramatically in persons with light-colored skin in all parts of the world.
As with other cancers, there are several causes of malignant melanoma formation such as
environmental (imminent exposure to ultraviolet radiation), genetic and immunological fac-
tors. In most studies, the incidence doubles every 6 to 10 years. In years of potential life
loss, melanoma is second to adult leukemia, as it affects younger individuals, causing a ma-
jor public health problem [1]. According to World Health Organization, about 132,000 new
cases of cutaneous melanoma are diagnosed worldwide each year. In particular, the American
Cancer Society estimated that there will be 96,000 new cases of cutaneous melanoma in the
United States and 7,000 deaths from this disease in 2020. In addition, approximately 57,000
new cases of invasive cutaneous melanoma will occur in men and 39,000 new cases in women
in 2020. On the other hand, there has been a great improvement in the survival of patients
with cutaneous melanoma, mainly due to the early detection of the tumor, in recent years.
In general, it is taken that “cured” is related to survival beyond 5 years for patients with
melanoma. This may be due to earlier diagnosis, when tumors are still at a thinner depth,
as well as improved treatment and surgical techniques [8].

Survival models with a cure fraction for cutaneous melanoma data have played an
important role in survival analysis in recent years. These types of survival models cover
situations in which there are persons not susceptible to the occurrence of the event of interest.
Consequently, a fraction (or proportion) of these individuals are not expected to experience
the event of interest, that is, these individuals are considered not susceptible or “cured”
in the survival analysis context. The proportion of cured individuals is denoted by the
cure fraction. Cure rate models have the main purpose to include in their formulation the
possibility of estimating the cure rate and they have been widely studied by several authors
and used for modeling time-to-event data for various types of cancers, including breast cancer,
non-Hodgkins lymphoma, leukemia, prostate cancer and melanoma.

The most popular type of cure rate models are the mixture (or Berkson–Gage) cure
model [2] and the promotion time cure rate model ([27] and [7]). While the Berkson–Gage
cure model is based on the assumption that only one cause is responsible for the occurrence
of the event of interest, that is, the unknown number of causes of the event of interest is
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assumed to be a Bernoulli random variable, in the promotion time cure model the number
of causes follows a Poisson distribution. In a biological context, the occurrence of the event
of interest might be due to one of many competing causes [14], with the number of causes
and the distribution of survival times associated with each cause [11] being unknown which
leads to a latent competing causes structure. In this sense, the event of interest can be the
death of a patient or a tumor recurrence, which can happen because of unknown competing
causes [21]. These latent competing causes can be assigned to metastasis-component tumor
cells left active after an initial treatment. A metastasis-component tumor cell is a tumor cell
having the potential of metastasizing [27]. The statistical literature on distributions which
accommodate different numbers of latent competitors have as the main works in the books
by [19] and [16] as well as the review paper by [26] and the papers of [10], [29], [6], [24] and
[4] can be mentioned as key references.

More recently, [23] extended the works of [27] and [7] by considering a cure rate model
(also known as a destructive weighted Poisson cure rate model) to deal with the assumption
that each initiated cell (competing cause) becomes cancerous with probability one. They
argue that this development is a much more realistic alternative to the cure rate model in
explaining the biological mechanism underlying the occurrence of the event in presence of
a cure fraction. This is because the proposed cure rate survival model presumes that the
original number of lesions, or altered cells are not repaired or eliminated after some intensive
treatment, and this group (which is represented by a variable) of unrepaired cells (or latent
factors) are potentially competing to give rise to a tumor, or risk of failure. Figure 1 represents
the destructive model in a diagram form.

Figure 1: Representation of the proposed destructive model in a diagram form.

However, there is an amount (or proportion) of cells that have not been initiated (nor-
mal cells), which includes repaired cells, that are not being explained properly by those cure
rate models that consider the number of initiated cells related to the occurrence of a tumor
being a random variable that follows the power series family of distributions which has as
special cases the Poisson, Bernoulli, geometric, negative binomial, etc.

In a biological context, it is noted that there is a much larger number of cells that are
not initiated (normal cells) than cells that are initiated (and consequently become malignant
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cells), which leads to an “excess of not initiated cells” (or “excess number of zero counts”)
in relation to cells which are lesioned.

In this sense, the excess of zeros (not initiated cells) can be explained in terms of
zero-inflated models as follows:

1. First, there exist an amount of not initiated cells (zeros) which have never experi-
enced any type of alterations or lesions (structural zeros).

2. On the other hand, there exist an amount of not initiated cells which have experi-
enced alterations (or lesions), but those cells were repaired (sampling zeros).

Therefore, it is maybe desirable to construct tractable statistical models that can adequately
incorporate a biological mechanism for the initiation process of carcinogenesis, and this is the
main motivation for the present research work.

Here, we introduce a new cure rate survival model which extends the works of [23] and [4]
by incorporating a structure to estimate the proportion of not initiated cells (those one that
have never been altered/lesioned and those one that have been repaired). To create such
structure, we use the concept of zero-inflated models by considering an extension of the
discrete power series distributions by including an additional parameter π. Its interpretation
is related to the proportion of repaired cells by means a repair system of the body. In this
approach, we assume that the number of initiated cells follow the zero-inflated power series
(ZIPS) [15] distribution, which is a suitable choice for modelling data sets that possesses
excess of zeros and overdispersion. Furthermore, it provides a realistic interpretation related
to the biological mechanism of the occurrence of the event of interest. Also, it includes a
process of destruction of tumor cells after an initial treatment ([23], [3] and [22]).

The rest of the paper is outlined as follows. In Section 2, we formulate the new cure
rate model. Some special models are reported in Section 3. Inference based on maximum-
likelihood (ML) is discussed in Section 4. In Section 5, we perform a simulation study to verify
the precision of the estimates of the model parameters. An application to a real data set on
cutaneous melanoma is addressed in Section 6. Finally, Section 7 provides some concluding
remarks.

2. MODEL FORMULATION

Let N be an unobservable (latent) random variable which follows the zero-inflated
power series (ZIPS) distribution, denoting the initial number of initiated cells related to the
occurrence (or recurrence) of a tumor for an individual in a population, with probability mass
function (pmf)

P [N=n] =


π + (1−π)

a0

g(θ)
, for n = 0 ,

(1−π)
anθ

n

g(θ)
, for n = 1, 2, 3, ... ,

(2.1)

where 0 < π < 1, an > 0 (an depends only on n) and g(θ) =
∑∞

n=0 anθ
n is a positive, finite

and differentiable function.
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Here, the parameter π is interpreted as the proportion of cells that have never experi-
enced alterations (or modifications) in their genes, while the interpretation for the quantity
(1−π) refers to the proportion of cells which have been repaired from a body repair mecha-
nism.

Also, we note that if π = 0, the ZIPS distribution reduces to the power series (PS)
distribution proposed by [20]. Some important well-known discrete distributions belong to
this family of distributions. For example, if g(θ) = (1+ θ)m and m is positive integer, Equa-
tion (2.1) becomes the zero-inflated binomial (ZIBin) distribution. If g(θ) = exp(θ), it de-
fines the zero-inflated Poisson (ZIP) distribution. Further, if g(θ) = (1 + θ)−φ, φ > 0 and
0 < θ < 1, the zero-inflated negative binomial (ZINB) distribution is obtained from Equation
(2.1), among others.

For the ZIPS random variable N , the probability generating function (pgf) is

AN (z) = π + (1−π)
g(θz)
g(θ)

, for 0 ≤ z ≤ 1 ,(2.2)

where the ratio g(θz)/g(θ) is the pgf of the PS distribution. For more details, see [20].

The first consequence of a prolonged treatment (destructive process) is the possible
formation of precancerous lesions into the genome of the cells. These cells are denoted
as malignant cells. Given N= n, let Xj , j = 1, 2, ..., n be independent random variables
(independent of N) following a Bernoulli distribution with success probability p indicating
presence of the j-th lesion. The pgf of the Bernoulli random variable Xj can be expressed as

AXj (z) = 1− p (1−z) , for 0 ≤ z ≤ 1 .(2.3)

The variable D, representing the total number of malignant cells among the N initial
cells (competing causes) which are not eliminated by the treatment is defined as

D =

{
X1 +X2 + ···+XN , if N > 0 ,

0 , if N = 0 ,
(2.4)

where D ≤ N . The idea involved in (2.4) was suggested by [28] considering that the initial
N cells are primary initiated malignant cells, whereXj in (2.4) represents the number of living
malignant cells that are descendants of the j-th initiated malignant cell during some time
interval. In this case, D denotes the total number of living malignant cells at some specific
time. The time to event for the j-th competing cause is represented by Vj , j = 1, ..., D.
Conditional on D, the Vj ’s are assumed iid with cumulative distribution function F (t) and
survival function S(t) = 1− F (t). Also, we note that the total number of malignant cells D
and the time Vj are not observable.

As pointed out by [3], in the competing causes scenario, the number of unrepaired
lesions D in (2.4) and the time V taken to transform these lesions into a detectable tumor are
both not observable (latent variables). In this context, we denote V a progression time. Thus,
the observed time to the event of interest (the patient’s death) is defined by the following
random variable

Y = min
{
V1, ..., VD

}
(2.5)

for D ≥ 1, and Y =∞ if D = 0, which leads to a proportion p0 of the population which is
called the cured fraction.
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Under this setup, [23] showed that the survival function for the population of the
random variable Y in (2.5) has the form

Spop(y) = P
[
Y ≥ y

]
= AD

(
S(y)

)
=

∞∑
d=0

P
[
D= d

] {
S(y)

}d = AN

(
AXj

(
S(y)

))
,

where S(·) is the survival function for non-cured population and AD(·) is the pgf for the
variable D. Combining (2.2) and (2.3), the survival function of the observable lifetime of the
event of interest can be expressed as

Spop(y) = π + (1−π)
g
(
θ
[
1− pF (y)

])
g(θ)

,(2.6)

where F (y) = 1−S(y). Hereafter, Equation (2.6) is referred to as the destructive zero inflated
power series (DZIPS) cure rate model. This model includes two important special cases:
For π = 0, it reduces to the destructive power series (DPS) cure rate model and if π = 0 in
addition p = 1, it gives the power series (PS) cure rate model ([4]).

From model (2.6), the proportion p0 of cured individuals in the population is

p0 = lim
y→∞

Spop(y) = π + (1−π)
g
(
θ(1− p)

)
g(θ)

.

The density function associated with (2.6) can be expressed as

fpop(y) = −dSpop(y)
dy

= −

[
(1−π)

g′
(
θ
[
1− pF (y)

])
g(θ)

]
,(2.7)

where g′(·) = dg(·)/dy, f(y) = dF (y)/dy denotes the proper density function of the time V
to the event in (2.6). Note that the function fpop(y) is a proper function, whereas Spop(y) is
not a proper survival function.

3. SPECIAL CASES OF THE DZIPS CURE MODEL

In this section, we present some specific models that arise from the ZIPS model formula-
tion. Here, we consider situations whereN is a random variable which follows the zero-inflated
Poisson, zero-inflated binomial, zero-inflated negative binomial, and zero-inflated geometric
distributions.

3.1. The destructive zero-inflated Poisson (DZIP) cure model

If we consider an =
1
n!

and g(θ) = exp(θ) in (2.1), the number of initiated cells N

follows a ZIP distribution with θ > 0 and π ∈ (0, 1) and pmf

PZIP[N= n] =


π + (1−π) e−θ , for n = 0 ,

(1−π)
e−θ θn

n!
, for n = 1, 2, 3, ... .

(3.1)
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The corresponding survival function of the DZIP cure model is

Spop(y) = π + (1−π) e−θpF (y) .(3.2)

The cure rate is p0 = π+ (1−π) e−θp, and the corresponding density function takes the form

fpop(y) = (1−π) θ p f(y) e−θpF (y) .(3.3)

There are some important special cases in (3.2). For π = 0, it follows the destructive
Poisson cure model defined by Rodrigues et al. [23]. We introduce the zero-inflated Poisson
cure model for p = 1, whereas for π = 0 in addition p = 1, if follows the promotion time cure
model studied by [27] and [7].

3.2. The destructive zero-inflated binomial (DZIBin) cure model

If we have an =
(
m

n

)
and g(θ) = (1 + θ)m in (2.1), the number of initiated cells N

follows a ZIBin distribution with parameters θ
1+θ , π ∈ (0, 1) (m is a positive integer) and pmf

PZIBin[N= n] =


π + (1−π)

(
1

1 + θ

)m

, for n = 0 ,

(1−π)
(
m

n

)(
θ

1 + θ

)n( 1
1 + θ

)m−n

, for n = 1, 2, 3, ... .

The survival function of the DZIBin cure model has the form

Spop(y) = π + (1−π)
[
1− θ pF (y)

1 + θ

]m

.(3.4)

Here, the cure fraction is given by p0 = π + (1−π)
[
1− θp

1+θ

]m
. So, the density function of

the DZIBin cure model can be expressed as

fpop(y) = (1−π)
mθ p f(y)

1 + θ

[
1− θ pF (y)

1 + θ

]m−1

.(3.5)

The DZIBin cure model in (3.4) with π = 0 in addition to p = m = 1 coincides with
the mixture (Berkson–Gage) cure model pioneered by [2].

3.3. The destructive zero-inflated negative binomial (DZINB) cure model

If we consider an =
Γ(φ−1+n)
n! Γ(φ−1)

, g(θ) = (1− θ)−1/φ and θ=
ηφ

1 + ηφ
in (2.1), the number

of initiated cells N follows a ZINB distribution with η > 0, φ ≥ −1, ηφ > 0 and π ∈ (0, 1),
with pmf

PZINB[N= n] =


π + (1−π) (1 + ηφ)−1/φ , for n = 0 ,

(1−π)
Γ(φ−1 +n)
n! Γ(φ−1)

(
ηφ

1 + ηφ

)n

(1 + ηφ)−1/φ , for n = 1, 2, 3, ... ,

where Γ(·) denotes the gamma function.
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The survival function of the DZINB cure model has the form

Spop(y) = π + (1−π)
[
1 + η φ pF (y)

]−1/φ ,(3.6)

the cure fraction is p0 = π + (1−π)
[
1 + η φ p

]−1/φ, and the associated density function
becomes

fpop(y) = (1−π) η p f(y)
[
1 + η φ pF (y)

]−(1/φ)−1 .(3.7)

The DZINB cure model in (3.6) with π = 0 reduces to the destructive negative binomial
model [4], whereas the negative binomial cure rate model [5] is a special case of (3.6) when
π = 0 and p = 1.

3.4. The destructive zero-inflated geometric (DZIG) cure model

Moreover, the destructive zero-inflated geometric (DZIG) cure rate model with param-
eter θ = η/(1+ η) is one more important special case of (3.6) when φ = 1 leading to

Spop(y) = π + (1−π)
[
1 + η pF (y)

]−1 ,(3.8)

the cure fraction is p0 = π + (1−π) [1 + ηp]−1 and the density function reduces to

fpop(y) = (1−π) η p f(y)
[
1 + η pF (y)

]−2 .(3.9)

4. INFERENCE AND ESTIMATION

Here, we consider the situation when the time to event of interest is not completely
observed and is subject to right censoring. Let Ci denote the censoring time. We observe
ti = min{Yi, Ci} and δi = 1 if Yi is the observed time to the event defined before and δi = 0 if
it is right censored, for i = 1, ..., n. Let γ represent the parameter vector of the distribution
for the unobserved lifetime in (2.5). Here, we note that the DZIPS cure rate models in
Section 3 are unidentifiable according to [18]. So, to overcome this problem, we propose
to relate the model parameters p and θ (or η) to covariates xi1 = (xi11, xi12, ..., xi1p1)

> and
xi2 = (xi21, xi22, ..., xi2p2)

>, respectively, without common elements and xi2 without a column
of intercepts. Here, the systematic components are

log
(

pi

1−pi

)
= x>i1β1 and log(θi) = x>i2 β2 ,(4.1)

where β1 = (β11,β12, ...,β1p1)
> and β2 = (β21,β22, ...,β2p2)

> represent the associated parameter
vectors. A critical issue is the selection of covariates to be included in the link functions in (4.1).
More precisely, given a link function and a set potential covariates, the problem is to find
and fit the “best” model under a “selected” subset of covariates [3]. In fact, to choose which
explanatory variables will be connected to the parameters pi and θi is not an easy task because
it depends on several factors such as the type of cancer, the covariates available in the study,
patient history, etc. It is always important to work together with the medical team to take
any kind of decision. Moreover, for readers interested in this discussion, we suggest [12] and [9].
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From n pairs of times and censoring indicators (y1, δ1), ..., (yn, δn), the observed full
likelihood function under non-informative censoring can be expressed as

L(ν,D) ∝
n∏

i=1

{
fpop(ti;ν)

}δi
{
Spop(ti;ν)

}1−δi ,(4.2)

where ν = (β>1,β
>
2 ,γ

>)>, D = (t,δ,x1,x2), t = (t1, ..., tn), x1 = (x11, ...,xn1), x2 = (x21, ...,xn2),
and fpop(· ;ν) and Spop(· ;ν) are defined in Equations (2.7) and (2.6), respectively.

Next, we assume a Weibull distribution for the observed lifetime in (2.5) with cdf and
pdf (for z > 0)

F (z;γ) = 1− exp(−zγ1 eγ2) and f(z;γ) = γ1 z
γ1−1 exp(γ2 − zγ1 eγ2) ,

respectively, γ> = (γ1, γ2)>, γ1 > 0 and γ2 > 0. The choice of the Weibull distribution is due
to the fact that this lifetime distribution is a very popular model and it has been extensively
used over the past decades for modeling data in reliability, engineering and biological studies.
Also, the pdf and cdf of the Weibull distribution have closed-forms which provide simple
expressions for its survival and hazard functions.

The ML estimation of the parameter vector ν can be implemented by numerical maxi-
mization of the log-likelihood function `(ν,D) = logL(ν,D) using R software. Further, con-
fidence intervals and hypothesis tests can be based on the large sample normal distribution
of the maximum likelihood estimator (MLE) with the variance-covariance matrix given by
the inverse of the Fisher information. More specifically, under conditions that are fulfilled
for the parameter vector ν in the interior of the parameter space but not on the boundary,
the asymptotic distribution of

√
n (ν̂−ν) is multivariate normal Np1+p2+2

(
0,K(ν)−1

)
, where

K(ν) is the information matrix. The asymptotic covariance matrix K(ν)−1 of ν̂ can be
approximated by the inverse of the (p1 + p2 + 2)× (p1 + p2 + 2) observed information matrix
− L̈(ν,D). The elements of the observed information matrix − L̈(ν,D) are calculated numer-
ically. The approximate multivariate normal distribution Np1+p2+2

(
0,−L̈(ν,D)−1

)
for ν̂ can

be used in the classical way to construct approximate confidence regions for some parameters
in ν. Also, we can use the likelihood ratio (LR) statistic for comparing some special models
with the DZIPS regression model.

5. SIMULATION STUDY

In this section, we conduct a simulation study in order to evaluate some properties of
the MLEs. For each individual i (i = 1, ..., n), the number of competing risks of the event
of interest N is generated from the ZIP and ZINB distributions given in (3.1) and (3.6),
respectively. We assume covariates xi11 and xi21 generated from a Bernoulli distribution
with parameter 0.5 and exponential distribution with parameter one, respectively. Also, we
consider the systematic components

log
(

pi

1−pi

)
= β10 + β11xi11 and log(ψi) = β21xi21 ,(5.1)

where ψi is the parameter θi and ηi in the DZIP and DZINB cure rate models, respectively.
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We simulate from the DZIP cure fraction distribution with parameters π = 0.25, γ1 = 2,
γ2 = −0.5, β10 = −1, β11 = 0.5 and β21 = 1.25; and from the DZINB distribution under two
setups: the first assuming π = 0.25, γ1 = 2, γ2 = −0.5, φ = 1, β10 = −1.5, β11 = 0.75 and
β21 = 1.5 (DZIG distribution), and the second with π = 0.25, γ1 = 2, γ2 = −0.5, φ = 1.5,
β10 = −0.5, β11 = 1.5 and β21 = 1.25 (DZINB distribution). The censoring times are sam-
pled from the uniform distribution in the (0, τ) interval, where τ controls the censoring
proportion of the uncured population. Here, the proportions of censored observations are
approximately 62%, 68% and 70%, respectively. The results are obtained from 1, 000 Monte
Carlo simulations where, in each replication, a random sample of size n = 50, 100, 250, 500
and 750 is drawn.

Table 1: Summaries of the performance of the DZIP cure model.

Sample size
Parameter

Summaries of parameters

(n) Mean Bias MSE CP

π 0.2161 −0.0339 0.0265 0.930

γ1 2.2849 0.2849 0.2951 0.933

γ2 −0.5761 −0.0761 0.2439 0.930
50

β10 −0.8371 0.1629 5.7489 0.960

β11 1.3094 0.8094 19.3054 0.973

β21 1.4400 0.1900 0.1870 0.924

π 0.2302 −0.0198 0.0124 0.952

γ1 2.1194 0.1194 0.0970 0.931

γ2 −0.5096 −0.0096 0.0885 0.946
100

β10 −0.9897 0.0103 1.4746 0.957

β11 0.6473 0.1473 3.4111 0.966

β21 1.3148 0.0648 0.0516 0.954

π 0.2424 −0.0076 0.0053 0.924

γ1 2.0399 0.0399 0.0277 0.950

γ2 −0.5099 −0.0099 0.0325 0.960
250

β10 −1.0200 −0.0200 0.1691 0.947

β11 0.5799 0.0799 0.5453 0.953

β21 1.2507 0.0007 0.0165 0.959

π 0.2473 −0.0027 0.0023 0.947

γ1 2.0165 0.0165 0.0144 0.927

γ2 −0.4921 0.0079 0.0168 0.938
500

β10 −1.0035 −0.0035 0.0734 0.949

β11 0.5008 0.0008 0.0616 0.962

β21 1.2326 −0.0174 0.0074 0.956

π 0.2494 −0.0006 0.0015 0.939

γ1 2.0127 0.0127 0.0082 0.951

γ2 −0.4945 0.0055 0.0106 0.950
750

β10 −1.0048 −0.0048 0.0489 0.940

β11 0.5068 0.0068 0.0407 0.958

β21 1.2329 −0.0171 0.0049 0.958
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Tables 1, 2 and 3 display the averages of the MLEs (mean), bias, mean square errors
(MSE) and coverage probabilities (CP) for nominal 95% of the DZIP, DZIG and DZINB cure
models, respectively. We conclude from these results that (for all parameters) the MSEs of
the MLEs decay toward zero when the sample size increases, as expected under standard
asymptotic theory. In fact, the estimates tend to be closer to the true parameter values and
the CPs converge to the nominal level when the sample size n increases.

Table 2: Summaries of the performance of the DZIG cure model.

Sample size
Parameter

Summaries of parameters

(n) Mean Bias MSE CP

π 0.2222 −0.0278 0.0353 0.939

γ1 2.3558 0.3558 0.4846 0.946

γ2 −0.5849 −0.0849 0.4056 0.914
50

β10 −1.3522 0.1478 7.4278 0.968

β11 1.9488 1.1988 27.0050 0.976

β21 1.7590 0.2590 0.5628 0.906

π 0.2467 −0.0033 0.0214 0.943

γ1 2.1990 0.1990 0.1914 0.929

γ2 −0.5569 −0.0569 0.1624 0.933
100

β10 −1.4941 0.0059 1.4062 0.962

β11 1.4290 0.6790 9.6464 0.977

β21 1.6210 0.1210 0.1626 0.937

π 0.2491 −0.0009 0.0086 0.940

γ1 2.0800 0.0800 0.0503 0.943

γ2 −0.5223 −0.0223 0.0568 0.945
250

β10 −1.4777 0.0223 0.2496 0.965

β11 0.8922 0.1422 1.0476 0.959

β21 1.5239 0.0239 0.0490 0.945

π 0.2540 0.0040 0.0042 0.933

γ1 2.0324 0.0324 0.0210 0.951

γ2 −0.5020 −0.0020 0.0230 0.959
500

β10 −1.4628 0.0372 0.1143 0.963

β11 0.7960 0.0460 0.1245 0.962

β21 1.4891 −0.0109 0.0223 0.939

π 0.2556 0.0056 0.0033 0.921

γ1 2.0276 0.0276 0.0144 0.938

γ2 −0.5092 −0.0092 0.0183 0.932
750

β10 −1.4529 0.0471 0.0842 0.944

β11 0.7859 0.0359 0.0848 0.958

β21 1.4873 −0.0127 0.0153 0.938



598 R.R. Pescim, A.K. Suzuki, G.M. Cordeiro and E.M.M. Ortega

Table 3: Summaries of the performance of the DZINB cure model.

Sample size
Parameter

Summaries of parameters

(n) Mean Bias MSE CP

π 0.0976 −0.1524 0.0436 0.995

γ1 2.9864 0.9864 2.1222 0.969

γ2 −0.8296 −0.3296 0.8123 0.931

50 φ 2.9119 2.4119 14.9794 0.999

β10 0.1421 1.1421 23.6676 0.983

β11 3.3878 2.6378 67.0179 0.992

β21 2.1163 0.8663 2.0872 0.966

π 0.1392 −0.1108 0.0331 0.984

γ1 2.4785 0.4785 0.6232 0.970

γ2 −0.6812 −0.1812 0.3434 0.942

100 φ 1.9185 1.4185 6.3233 1.000

β10 −0.7544 0.2456 6.3957 0.966

β11 2.4230 1.6730 26.6289 0.984

β21 1.6889 0.4389 0.5671 0.976

π 0.2005 −0.0495 0.0155 0.975

γ1 2.1611 0.1611 0.1189 0.977

γ2 −0.5978 −0.0978 0.1137 0.969

250 φ 1.0213 0.5213 1.1649 1.000

β10 −0.9418 0.0582 0.6769 0.961

β11 1.2954 0.5454 5.1548 0.982

β21 1.3871 0.1371 0.0895 0.986

π 0.2362 −0.0138 0.0066 0.956

γ1 2.0704 0.0704 0.0408 0.970

γ2 −0.5519 −0.0519 0.0576 0.960

500 φ 0.6995 0.1995 0.4031 0.996

β10 −0.9677 0.0323 0.1758 0.962

β11 0.9161 0.1661 1.0521 0.975

β21 1.3053 0.0553 0.0342 0.977

π 0.2468 −0.0032 0.0037 0.953

γ1 2.0480 0.0480 0.0261 0.964

γ2 −0.5188 −0.0188 0.0346 0.960

750 φ 0.5932 0.0932 0.1934 0.978

β10 −0.9744 0.0256 0.1111 0.957

β11 0.8271 0.0771 0.2584 0.975

β21 1.2754 0.0254 0.0199 0.971

6. APPLICATION: CUTANEOUS MELANOMA DATA

In this section, we illustrate the usefulness of the DZIPS cure rate regression with an
application to a real data set on cancer recurrence. The data are part of a study on cutaneous
melanoma (a type of malignant cancer) extracted from [25] on 205 patients observed for the
evaluation of postoperative in the period from 1962 to 1977. The cutaneous melanoma data
contain information about the survival times of patients after surgery for malignant melanoma
which were collected at Odense University Hospital [13].
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In general, the standard treatment of cutaneous melanoma consists of broad excision
of primary tumor or cicatrices at a distance of at least 5 cm down to the fascia, though not
including this. On the face the tumor was removed at a distance of only 2 cm. Lymphonodec-
tomy was only undertaken when lymph nodes were clinically suspected. The clinical data
and follow-up were based on information from the case histories of the patients. For more
details, see [13].

The observed survival time range, approximately from 0 to 15 years (with mean equal
to 5.9 years), refers to the time until the patient’s death or the censoring time. There are
72% of censoring, corresponding to the patients which had died from other causes or were
still alive at the end of the study. The following variables involved in the study for each
patient are: yi : observed time (in years), xi11 : tumor thickness (in mm, mean = 2.92 and
standard deviation = 2.96) and xi21 : ulceration status (absent, n= 115; present, n= 90).
As we mentioned earlier, the identifiability issue is avoided if the parameter p is linked only to
tumor thickness, while the parameter θ (or η) is linked to the ulceration status in the DZIP,
DZINB and DZIG regressions. The survival function for these cure rate regressions are:

• DZIP survival function

S(yi |xi) = π + (1−π) exp
{
−θi pi

[
1− exp

(
−yγ1

i eγ2
)]}

,

where

pi =
exp

(
β10 + β11xi11

)
1 + exp

(
β10 + β11xi11

) and θi = exp
(
β20 + β21xi21

)
.

• DZINB survival function

S(yi |xi) = π + (1−π)
{

1 + ηi φ pi

[
1− exp

(
−yγ1

i eγ2
)]}−1/φ

,

where

pi =
exp

(
β10 + β11xi11

)
1 + exp

(
β10 + β11xi11

) and ηi = exp
(
β20 + β21xi21

)
.

• DZIG survival function

S(yi |xi) = π + (1−π)
{

1 + ηi pi

[
1− exp

(
−yγ1

i eγ2
)]}−1

,

where

pi =
exp

(
β10 + β11xi11

)
1 + exp

(
β10 + β11xi11

) and ηi = exp
(
β20 + β21xi21

)
.

Figure 2(a) shows that the Kaplan–Meier survival function estimate confirms a plateau
around 0.64 and this fact indicates the presence of a proportion of patients for whom the
malignant melanoma will never occur again, and then, those patients can be considered as
cured. Also, the empirical Kaplan–Meier curves stratified by ulceration status (upper: absent,
lower: present) are displayed in Figure 2(b) and they reveal that the ulceration affects the
lifetime of the patients with malignant melanoma.
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Figure 2: (a) Kaplan–Meier curve for the cutaneous melanoma data.
(b) Kaplan–Meier curves stratified by ulceration status
(upper: present, lower: absent).

For model comparison, we fit the DZIP, DZINB and DZIG cure models described in
Section 3 to the cutaneous melanoma data. The special cases of these models were also fitted
to these data, i.e., the Poisson (π = 0 and p = 1), the negative binomial (π = 0 and p = 1)
and the geometric (π = 0, p= 1 and φ= 1) models. We note that these special models belong
to the PS cure models proposed by [4]. For these models, the destructive process is absent
and consequently, the parameter θ (or η) is linked to both variables (ulceration status and
tumor thickness). In order to compare the models, we use the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC). The results of the DZIPS cure models
and its sub-models are reported in Table 4.

Table 4: The values of max log L(·), the AIC and BIC statistics for the Destructive Zero-
Inflated Poisson (DZIP), Destructive Zero-Inflated Negative Binomial (DZINB),
Destructive Zero-Inflated Geometric (DZIG), Poisson, negative binomial and
geometric cure models.

Survival Cure Rate Model max log L(·) AIC BIC

Destructive Zero-Inflated Poisson −201.18 416.3 439.6
Destructive Zero-Inflated Negative Binomial −198.95 413.9 440.5
Destructive Zero-Inflated Geometric −199.93 413.8 437.1
Poisson −207.83 425.6 442.2
Negative Binomial −201.52 423.0 439.7
Geometric −205.42 420.8 437.4

According to the criteria in Table 4, the DZIG cure rate regression is the best model
and so, it is selected as our working model. For this regression, we estimate the un-
known parameters via ML method. All computations are performed using the R software.
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The survival function for the DZIG cure rate regression is

S
(
yi; π̂, γ̂1, γ̂2, β̂1, β̂2

)
= π̂ + (1− π̂)

{
1 + η̂i p̂i

[
1− exp

(
−ybγ1

i ebγ2
)]}−1

,

where

p̂i =
exp

(
β̂10 + β̂11xi11

)
1 + exp

(
β̂10 + β̂11xi11

) and η̂i = exp
(
β̂20 + β̂21xi21

)
.

Here, for the cutaneous melanoma data set, the vectors β̂1 and β̂2 are

β̂1 = (β10, β11)> and β̂2 = (β20, β21)> .

Table 5 gives the MLEs of the parameters, their standard errors and p-values from the
fitted regression. We note from the fitted DZIG cure rate regression that ulceration status and
tumor thickness are significant sloppy 1% and there is a significant difference for the presence
or absent of ulceration status and also a difference related to the thickness of the tumor.
Thus, those variables have influenced on the survival times of the patients. The estimate of
the parameter π is 0.3895, and as mentioned earlier in Section 1, this indicates a proportion of
those cells which never experience alterations/lesions. Consequently, the proportion of cells
that were repaired by a repair system of the organism is (1−π) = 0.6105 (or 61.05%).

Table 5: Results from the fitted DZIG cure rate regression.

Parameter Estimate Standard Error p-value

γ1 2.41 0.28 —
γ2 −5.00 0.61 —
π 0.38 0.24 —

β10 −4.41 0.93 < 0.001
β11 0.86 0.26 0.001
β20 2.59 0.88 0.003
β21 3.76 0.74 < 0.001

Figure 3 displays the estimated survival function of the DZIG cure rate regression for
patients with 0.320 mm, 1.940 mm and 4.254 mm tumor thickness, which correspond to the
5%, 50% and 80% tumor thickness quantiles. The survival rate decreases more rapidly for
patients with thicker tumors in presence of ulceration. On the other hand, for patients with
less thick tumor in presence of ulceration, the survival rate does not fall bellow 75% as shown
in Figure 3(a).

Finally, we turn our attention to the role of the ulceration status and thickness tumor
covariates on the estimation of the surviving fraction (p0). To estimate the proportion of
cured individuals, we use Equation (4.1) and the MLEs of the parameters. So, for the DZIG
cure regression, the estimated cure fraction p̂0 = π̂+ (1− π̂)

[
1 + η̂ p̂

]−1 is 0.6450. This result
is confirmed in Figure 2(a). Also, we note that the cure rate decreases when tumor thickness
size increases and it is smaller for patients with presence of ulceration.
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Figure 3: Estimated survival function from the DZIG cure rate regression
stratified by ulceration status (upper: absent, lower: present)
for patients with tumor thickness equal to: (a) 0.320 mm,
(b) 1.940 mm, and (c) 4.254 mm.

7. CONCLUDING REMARKS

In this paper, we propose the destructive zero-inflated power series (DZIPS) family of
cure rate models by extending the works of [23] and [4]. The DZIPS models are very flexible
and contain special models such as the zero-inflated binomial (ZIBin), zero-inflated Poisson
(ZIP), zero-inflated negative binomial (ZINB), zero-inflated geometric (ZIG) models, among
others. The proposed model allows estimation of the cure fraction by incorporating a system-
atic component to estimate the proportion of not initiated cells (those one that have never
been altered/lesioned and those one that have been repaired). Hence, this extended family
of models is very flexible in many practical situations. An application to a real cutaneous
melanoma data set demonstrates that it can be used quite effectively to provide better in-
terpretation for the underlying biological mechanism, in addition to offering a better fit than
the other commonly used cure rate models.
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1. INTRODUCTION

The statistical study of single index models have been investigated and developed by
several authors from a practical and theoretical point of view. The case of a vector explanatory
variable was studied by [19] and [20]. The single index models are very popular in the
econometric community because it respond two important preoccupations. The first concerns
dimension reduction since this type of model makes it possible to provide a solution to
the problem of the curse of dimensionality, in the sense that pure nonparametric models
are highly affected by dimensionality effects while semiparametric ideas are more appealing
candidates. The second is related to the interpretability of the index θ introduced in these
models, for more details on refer to [8], [18] and [3] for an overview on methodological issues
on FDA. Therefore, the single functional index model accumulate the advantages of single
index model, and inherits the potential of the functional linear model in terms of applications.
The interested reader, for the semiparametric and the nonparametric functional models, may
refer [17], [24, 25], [27] and [7] for survey on the topics.

The modelization of functional data, has been developed intensively. The motivation of
such statistical analysis is justified by the recent technological development of the measuring
instruments that offers the opportunity to observe phenomena in an increasingly accurate way,
but this accuracy obviously generates a large amount of data observed over a finer grid, which
can be considered as observations varying over a continuum. The most theoretical results
are obtained under independence condition. However, in practice, it is rarely that we have
an independent identically distributed observations of functional nature. The functional time
series presents the more realistic situation. Thus it is really crucial to study the functional
statistical models when the usual independence condition on the statistical sample is relaxed.
In this paper, we consider the problem of the nonparametric estimation of the regression
function in single functional index model when the data are weakly dependant.

Usually the dependence structure is modelled with the strong mixing hypothesis, in
this paper we focus in some more general correlation, that is the quasi-associated condition.
The latter has been introduced for real valued random fields by [5], which generalizes the
positively associated variables introduced in [13].

From practical point of view, this kind of data has great importance in practice, in
particular, in reliability theory, mathematical physics and in percolation theory (see, for in-
stance, [28]) for more discussion on the practical interest of these random variables. Moreover,
from the theoretical point of view, the concept of quasi-association correlation can be viewed
as a particular case of the weak dependence condition for real-valued stochastic processes
introduced by [12] which allows treating the mixing condition and association correlation in
a unified approach.

Noting that the single index model is a semi-parametric regression model, thus, it couples
the advantages of both parametric and nonparametric regression models. Because of these
advantages, it has received an increasing amount of attention in the nonparametric regression
literature. Key references on this topic in multivariate statistic are [21] and [20] for previous
results and [30] for more recent advances and references.
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However, in the literature of functional statistic, the single functional index model is
strictly limited in the case where the data is functional (a curve). The first result in this
context, was given by [15]. They obtained the almost complete convergence of the regression
function r(·) in the independent and identically distributed (i.i.d.) case. The generalization
of this result to the dependent case has been studied by [26]. [29] uses a Bayesian method
to estimate the bandwidths in the kernel form error density and regression function, under
an autoregressive error structure, and according to empirical studies, the author considered
that the single functional index model gives improved estimation and prediction accuracies
compared to any nonparametric functional regression considered. [27] have proposed a new
automatic and location-adaptive procedure for estimating regression in a Functional Single-
Index Model (FSIM) based on k-Nearest Neighbours ideas. Motivated by the analysis of
imaging data, [23] proposed a novel functional varying-coefficient single-index model to carry
out the regression analysis of functional response data on a set of covariates of interest.
This method represents a new extension of varying-coefficient single-index models for scalar
responses collected from cross-sectional and longitudinal studies. By simulation and real data
analysis, the authors demonstrated the advantages of the proposed estimate. [31] have consid-
ered the problem of predicting the real-valued response variable using explanatory variables
containing both multivariate random variable and random curve. The authors considered the
functional partial linear single-index model in order to treat the multivariate random variable
as linear part and the random curve as functional single-index part, respectively.

The concept of quasi-association for random variables taking its values in a Hilbert space
has been investigated by [10], and obtained some limit theorems for this type of variables.
More recently, [11] studied the asymptotic normality of regression function under quasi-
associated data when the explanatory variable takes its values in a Hilbert space.

The main purpose of the present paper is to establish the asymptotic properties of
the estimator r̂θ(·), when the variables are functional quasi-associated and in single index
structure, such as the almost complete convergence rates. Furthermore, the asymptotic dis-
tribution is obtained under some mild conditions.

We point out that the mixing and the association concern two distinct classes of pro-
cesses but not disjoint and offer two complementary approaches to study the dependence.
Moreover, the functional quasi-associated data analysis has great importance in various
domains such as the reliability theory or the statistical mechanics. Furthermore, it should be
noted that the dependence condition considered here allow to avoid the widely used strong
mixing condition which is very easy to verified in practice.

The rest of this work is organized as follows. In Section 2, we describe the single index
regression model for functional data and in the quasi-associated framework, the next section is
devoted to the introduction of the notation and hypotheses needed to state our main results.
In Section 4, we will establish our main results of the almost complete convergence of the
kernel estimators and the asymptotic normality under non restrictive conditions. In Section
5.2, we discuss the impact of our contribution in practice application of our results for the
construction of the confidence interval. In Section 6 we perform a short simulation study to
show that our proposed model works well for finite samples. To avoid interrupting the flow
of the presentation, all mathematical developments are relegated to the Section 7.
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2. MODEL AND ESTIMATOR

We start by giving a definition of quasi-association adapted to the functional framework.
In the real valued random fields, [5] define the quasi-association dependence in the Definition
2.1 and it adapted to functional random variables in the Definition 2.2 given in [10] as follows.

Definition 2.1. A sequence (Xn)n∈N of r.v.’s is said to be quasi-associated, if for
any disjoint subsets I and J of N and all bounded Lipschitz functions f1 : R|I| → R and
f2 : R|J | → R satisfying:

(2.1)
∣∣∣Cov

(
f1(Xi, i∈ I), f2(Xj , j ∈ J)

)∣∣∣ ≤ Lip(f1) Lip(f2)
∑
i∈I

∑
j∈J

∣∣Cov(Xi, Xj)
∣∣ ,

where |I| denotes cardinality of a finite set I, and the Lipschitz of a function f(·) is defined
by

Lip(f) = sup
x6=y

∣∣f(x)− f(y)
∣∣

‖x− y‖1
, with ‖(x1, ..., xk)‖1 =

n∑
k=1

|xk| .

Definition 2.2. A sequence (Xi)i∈N of r.v.’s taking values in a Hilbert space H is
called quasi-associated relative to an orthonormal basis {ep : p≥ 1} of H, if for any p ≥ 1,
(〈Xi, e1〉, ..., 〈Xi, ep〉)i∈N is a sequence of random vectors quasi-associates.

Now, we consider a sequence of quasi-associated random variables {(Xi, Yi)}i∈N iden-
tically distributed as (X,Y ), which are valued in H×R, where H is a separable real Hilbert
space with inner product 〈·, ·〉 and a orthonormal basis {ep : p≥ 1}. We consider the semi-
metric dθ(·, ·) associated to the single-index θ ∈ H defined by ∀u, v ∈ H:

dθ(u, v) := |〈θ, u−v〉| .

The purpose of this paper is to study the estimation of the nonparametric regression of Y
given 〈θ,X〉 structure, denoted by

(2.2) r(〈θ,Xi = x〉) = E
(
Y | 〈θ,Xi = x〉

)
.

Such structure suppose that the explanation of Y from X is done through an fixed functional
index θ in Θ. Now, we suppose that exists a θ ∈ Θ ⊂ H where the observations (Xi, Yi)i=1,...,n

are related by the following relation:

(2.3) Yi = r(〈θ,Xi〉) + εi , ∀ i= 1, ..., n ,

where r(·) is a real function, and for i = 1, ..., n, εi is a real random variable such that
E(εi |Xi) = 0. We consider that the single functional index model is identifiable, i.e., if the
regression function is differentiable and if 〈θ, e1〉 = 1, where e1 is the first element of an
orthonormal basis of H. Then, if r1(〈θ1, x〉) = r2(〈θ2, x〉) implies that r1 ≡ r2 and θ1 ≡ θ2.
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This hypothesis that we consider is demonstrated by [15] once we have the differentiability of
the regression operator r(·). For more details on the problem of identifiability of the single
functional index model, one can refer to the last reference. The kernel estimator r̂θ(·) of
regression operator rθ(·) = r(〈θ, ·〉) is defined by

(2.4) r̂θ,n(x) =

n∑
i=1

YiKi(x)

n∑
i=1

Ki(x)

, for all x ∈ H ,

where Ki(x) := K
(
〈θ,x−Xi〉

hn

)
is the kernel function and hn is the bandwidth parameter de-

creases to zero as n goes to infinity.

3. ASSUMPTIONS AND NOTATION

In the sequel, we will denote by C and/or C ′ some strictly positive constants and by
λr the covariance coefficient defined as:

λr := sup
s≥r

∑
|i−j|≥s

λi,j ,

where

λi,j =
∑
k≥1

∑
l≥1

∣∣Cov(Xk
i , X

l
j)
∣∣+∑

k≥1

∣∣Cov(Xk
i , Yj)

∣∣+∑
l≥1

∣∣Cov(Yi, X
l
j)
∣∣+ ∣∣Cov(Yi, Yj)

∣∣ ,
with Xp

i := 〈Xi, ep〉. In our analysis, we shall assume the following assumptions:

(H1) Let Ei(x) := 〈θ, x−Xi〉 so that Ei(x) is a real-valued random variable,

Gθ(x,hn) := P
(
|Ei(x)| ≤ hn

)
> 0 ,

and Gθ(x, ·) is differentiable at 0.

(H2) The random pair {(Xi, Yi), i∈N} is quasi-associated such that:

(i) The covariance coefficient satisfies

λk ≤ Ce−ak for some a > 0 , C > 0 ;

(ii) The process (Xi)i satisfies

max
i6=j

{
P
(
|Ei| ≤ hn, |Ej | ≤ hn

)}
:= ψθ(x,hn) > 0 ,

where ψθ(x, ·) is differentiable at 0;
(iii) The response observations (Yi)i are such that, almost surely

∀ i 6= j E
(
|YiYj | |Xi,Xj

)
≤ C < ∞

and E
(
|Y |p |X= x

)
≤ C < ∞ for p> 4 .
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(H3) For all u, v ∈ H we have∣∣rθ(u)− rθ(v)
∣∣ ≤ C

∣∣〈θ, u−v〉∣∣β , for certain β > 0 .

(H4) The kernel K(·) is a Lipschitzian function on [0, 1] such that

C 1[0,1](t) < K(t) < C ′1[0,1](t) .

(H5) There exists a sequence of positive real numbers δn such that
δp−2
n χ

(p−4)/2p
θ (x,hn) → 0 ,∑

n

n δ−p
n < ∞ ,

where χθ(x,hn) = max
(
ψθ(x,hn), G2

θ (x,hn)
)

and p is given in (H2).

Some comments on the assumptions

All the assumptions are standard in this context of semiparametric functional data
analysis. The concentration property of the explanatory variable in small balls under single
index topological structure is defined in the assumption (H1). The quasi-association features
of the underlying functional time series is explored through the condition (H2). It covers the
three fundamental aspects of the considered process. The correlation’s level of the data is
quantified by the geometric form of the covariance coefficient λk, while the local dependency
of the data is expressed by the function ψθ(x,hn) allowing to emphasize the functional com-
ponent of the time series (Xi)i. It should be noted that the conditional moments integrability
in (H2)(iii) is usual in the regression data analysis. It was used by [16] for the nonparametric
case and by [1] in the single functional index case. It is less restrictive than the exponential
version assumed by [10]. Finally, let us mention that the hypothesis (H3) is used to control
the regularity condition of the link function with respect the single index. This kind of as-
sumption is needed to evaluate the bias in the asymptotic results of this paper, while the
conditions (H4) and (H5) are classical technical assumptions in NFDA.
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4. MAIN RESULTS

4.1. The almost consistency

Our aim is to establish the almost complete convergence (a.co.)1 of r̂θ(x) to rθ(x),
and the main result is given by the following theorem.

Theorem 4.1. Under the assumptions (H1)–(H5), we have, as n→∞,

(4.1) r̂θ,n(x)− rθ(x) = Oa.co.

hβ
n +

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .

Let

(4.2) r̂θ,0(x) :=
1

nEK1(x)

n∑
i=1

Ki(x) and r̂θ,1(x) :=
1

nEK1(x)

n∑
i=1

YiKi(x) .

Let us consider the following decomposition:

r̂θ,n(x)− rθ(x) =
r̂θ,1(x)
r̂θ,0(x)

− rθ(x)

=
1

r̂θ,0(x)

[(
r̂θ,1(x)− E(r̂θ,1)

)
−
(
rθ(x)− E(r̂θ,1)

)]
− rθ(x)
r̂θ,0(x)

(
r̂θ,0 − 1

)
=

1
r̂θ,0(x)

[(
r̂θ,1(x)− r̂θ,2(x)

)
+
(
r̂θ,2(x)− E(r̂θ,2)

)]
+

1
r̂θ,0(x)

[(
E(r̂θ,2(x))− E(r̂θ,1)

)
−
(
rθ(x)− E(r̂θ,1)

)]
− rθ(x)
r̂θ,0(x)

(
r̂θ,0 − 1

)
,

where

(4.3) r̂θ,2(x) :=
1

nEK1(x)

n∑
i=1

ŶiKi(x) .

The real variable Y response is not necessarily bounded. For this, we introduce the truncated
random variable Ŷ , defined by Ŷi = Yi 1{|Yi|≤δn}. The proof of the Theorem 4.1 is based on
the following Lemmas.

1We say that the sequence (Θn)n converges a.co. to zero, if and only if

∀ τ > 0 ,
X

n≥1

P
�
|Θn|> τ

�
< ∞ .

Furthermore, we say that Θn = Oa.co.(θn) if there exists τ0 > 0 such that

X

n≥1

P
�
|Θn|> τ0 θn

�
< ∞ .
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Lemma 4.1 (See [22]). Let X1, ..., Xn be real random variables such that EXi = 0
and P

(
|Xi| ≤M

)
= 1, for all i = 1, ..., n and some M <∞. Let

σ2
n = Var

(
n∑

i=1

Xi

)
.

Assume, furthermore, that there exist K<∞ and β>0 such that, for all u-tuplets (s1, ..., su)
and all v-tuplets (t1, ..., tv) with 1≤ s1 ≤ ··· ≤ su ≤ t1 ≤ ··· ≤ tv ≤ n, the following inequality

is fulfilled: ∣∣∣Cov
(
Xs1 ...Xsu , Xt1 ...Xtv

)∣∣∣ ≤ K2Mu+v−2 v e−β(t1−su) .

Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ exp

{
− t2/2

An +B
1
3
n t

5
3

}
,

for An ≤ σ2
n and

Bn =
(

16nK2

9An(1−e−β)
∨ 1
)(

2(K ∨M)
1−e−β

)
.

Lemma 4.2. Under the assumptions (H1)–(H5), we have, as n→∞,

(4.4)
∣∣r̂θ,2(x)− E(r̂θ,2)

∣∣ = Oa.co.


√√√√χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .

Lemma 4.3. Under the assumptions (H1), (H2)(i,ii)–(H5), we have, as n→∞,

(4.5)
∣∣r̂θ,0(x)− 1

∣∣ = Oa.co.


√√√√χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .

Lemma 4.4. Under the assumptions of Lemma 4.3, we have, as n→∞,

(4.6) ∃ η > 0 such that
n∑

i=1

P
(∣∣r̂θ,0(x)

∣∣< η
)
<∞ .

Lemma 4.5. Under the assumptions (H1), (H4)–(H5), we have, as n→∞,

(4.7)
∣∣rθ(x)− E(r̂θ,1)

∣∣ = O
(
hβ

n

)
.

Lemma 4.6. Under the assumptions (H1), (H3)–(H5), we have, as n→∞,

(4.8)
∣∣E(r̂θ,2)− E(r̂θ,1)

∣∣ = O


√√√√χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .

Lemma 4.7. Under the assumptions (H1), (H2)(iii)–(H5), we have, as n→∞,

(4.9)
∣∣r̂θ,1(x)− r̂θ,2(x)

∣∣ = Oa.co.


√√√√χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .
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4.2. The asymptotic normality

Now, we study the asymptotic normality of r̂θ(x). To do that, we assume that the
function

ϕθ(x) := E
(
Y 2

1 | 〈θ,X1 = z〉
)
, z ∈ H ,

exists and is uniformly continuous in some neighborhood of z. Moreover, we modify slightly
the assumptions (H1), (H4) and (H′

5) is required:

(H′
1) The concentration property (H1) holds. Moreover, there exists a function βx(·)

such that
∀ s ∈ [0, 1] , lim

hn→0
Gθ(x,shn)/Gθ(x,hn) = βx(s) .

(H′
4) The kernel K(·) satisfies (H3) and is a differentiable function on ]0, 1[ with

derivative K ′(·) such that −∞ < C < K ′(·) < C ′ < 0.

(H′
5) There exists a sequence of positive real numbers γn such that γn χθ(x,hn) → 0 ,

n3/2 χ
p/p−2
θ (x,hn) → 0 .

Theorem 4.2. Under the assumptions (H′
1)–(H2), (H3), (H′

4), (H′
5) and if

nh2β
n Gθ(x,hn) −→ 0 ,

we have, for all x ∈ A,

(4.10)
√
nGθ(x,hn)

(
r̂θ,n(x)− rθ(x)

) D−→2 N
(
0, σ2

θ(x)
)
, as n→∞ ,

where

σ2
θ(x) =

β2

(
ϕθ(x)− r2θ(x)

)
β2

1

,

with

βj = −
∫ 1

0
(Kj)′(s) βx(s) ds , for j = 1, 2 ,

and

A =
{
x ∈H : σ2

θ(x) 6= 0
}

.

We can use the same decomposition as in the proof of Theorem 4.1, where δn is replaced
by γn in r̂θ,2(x). Observe that the consistency of r̂θ,0 to 1 is shown in Lemma 4.3 and, under
the consideration nh2β

n Gθ(x,hn) −→ 0, we get√
nGθ(x,hn)

(
rθ(x)− E(r̂θ,1)

)
−→ 0 .

2 D−→ denotes the convergence in distribution.
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Moreover, by straightforward modification of the proofs of Lemmas 4.7 and 4.6, we obtain,
under (H′

5), √
nGθ(x,hn)

∣∣r̂θ,1(x)− r̂θ,2(x)
∣∣ −→ 0 , in probability,

and √
nGθ(x,hn)

(
E(r̂θ,2)− E(r̂θ,1)

)
−→ 0 .

So, all it remains to show is the following intermediate lemma.

Lemma 4.8. Under the hypotheses of Theorem 4.2, we have, as n −→∞,

(4.11)
√
nGθ(x,hn)

(
r̂θ,2(x)− rθ(x) r̂θ,0(x)− E

(
r̂θ,2(x)− rθ(x) r̂θ,0(x)

)) D−→ N
(
0, σ2

θ(x)
)
.

5. DISCUSSION AND APPLICATIONS

5.1. On the weak functional time series data analysis

The functional time series data analysis is one of the most important subject in func-
tional data analysis (FDA). It is motivated by the rarity of the independent identically dis-
tributed observations functional observations in practice. The functional time series presents
the more realistic situation. At this stage, the most of the existing studies on functional
dependent data are developed under mixing assumption, namely, strong mixing framework.
However, in this contribution, we investigate functional semiparametric regression under weak
dependency condition of the quasi-associated correlation. From theoretical point of view this
consideration allows to increase the scope of application of the proposed functional model.
Indeed, it is well known that the mixing conditions are very hard to check and there exists
lot of usual process fail to verify the mixing assumption. [4] have listed a numerous process,
we quote, for instance, Bernoulli shifts class, Markov processes driven by discrete innovations
and the AR(1) process with ρ < 1/2 and Bernoulli innovation among others. Thus we can
say that the important feature of our study is to analyse the functional time series data
without the mixing assumption. In addition we point out that our study generalize also the
classical association (negative or positive). Thus the quasi-associated functional time series
data is sufficiently weak to cover a large class of weak functional time series data. Finally,
let us precise that our theoretical development explore the dependence structure of the data
through the convergence rate. The latter contains the additional χθ(x,hn) that is control the
local dependency of the data. It is clear that this dependency condition impact significantly
the convergence rate of the estimator compared to the independent situation. Of course the
independent case is more fast than the dependent one.
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5.2. Application to the confidence intervals

The purpose of a confidence interval is to supplement the functional estimate at a point
with information about the uncertainty in this estimate. It is a direct application of the
Central Limit Theorem (CLT). In order to provide a confidence interval for the regression
function in single functional model, we need first to propose a consistent estimator of the
variance σ2

θ(x). A natural consistent estimator of this variance is obtained by estimating the
parameters involved in this quantity such as (βj)j=1,2 and ϕθ(·). A natural estimator of βj is

(5.1) β̂j =
1

nGθ(x,h)

n∑
i=1

Kj

(
〈θ, x−Xi〉

hn

)
, j = 1, 2 ,

while the Nadaraya–Waston type estimator ϕ(·) is

(5.2) ϕ̂n(x) =

n∑
i=1

Y 2
i K

(
〈θ, x−Xi〉

hn

)
n∑

i=1

K

(
〈θ, x−Xi〉

hn

) .

Consequently, by combining the Equations (5.1), (5.2) with the definition of r̂θ,n(x) consis-
tent estimator of σ2

θ(x) denoted by σ̂2
θ(x), it follows that the asymptotic confidence band at

asymptotic level 1− α for rθ(x) is

(5.3) r̂θ,n(x) ± U1−α
2

(
σ̂2

θ(x)
nGθ(x,h)

)1
2

.

Let us note the
( bσ2

θ(x)

n Gθ(x,h)

)
is essay to compute and does not require the estimation of Gθ(x,h).

The latter will be removed by a simple manipulation.

5.3. On the applicability of the SFIM

From theoretical point of view, it is well known that the single index model is one of the
most important additive models used to improve the convergence rate of the nonparametric
approach. This model keeps this feature in functional statistics. However, the applicability of
this model in practice requires an additional works that is the determination of the functional
index θ and the smoothing parameter h which are often unknown in practice. This issue has
been widely addressed in the nonfunctional case, but, remains not fully explored in the
functional statistics. The readers interested by this topics can refer to [29] and the references
therein (for recent advances in this topic). Thus, the estimation of the functional index
and/or the bandwidth hn in the quasi-associated functional time series case is an important
prospect of the present contribution. As preliminary step, we present in this paragraph
some selector rules compatible with our context of the functional time series data analysis.
The first one is the Least Squares Cross-Validation (LSCV) rule, defined by

(5.4) (θ̂, ĥ) = argmin
hn∈Hn

θ∈Θ

1
n

n∑
i=1

(
Yi − r̂−i

θ,n(Xi)
)2
,
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where r̂−i
θ,n is the leave-one-out estimator of r̂θ,n. This kind of cross-validation is widely used

in the nonparametric prediction problems to select the bandwidth parameter in the kernel
smoothing. It was popularized in semi-parametric functional data analysis by [1]. The second
one is the Maximum Likelihood Cross-Validation (MLCV) rule, expressed by

(5.5) (θ̂, ĥ) = argmin
hn∈Hn

θ∈Θ

1
n

n∑
i=1

log f̂
(
Yi | r̂−i

θ,n(Xi)
)
,

where f̂(·|·) is the estimator of the conditional density of Y given 〈θ,X〉. This criterion can
be viewed as generalization of the rule (5.4) when the conditional distribution is Gaussian.
Of course in practice we must optimize these rule over finite subset Θ of index. Similarly to [1],
we propose to select the optimal index from the following subset:

Θ = Θn =

{
θ ∈H, θ =

k∑
i=1

ciei, ‖θ‖= 1, and ∃ j ∈ [1, k] such that 〈θ, ej〉 > 0

}
,

where (ei)i=1,...,k is finite basis functions of the Hilbert subspace spanned by the covariates
(Xi)i and (ci)i some real calibrated constants allowing to insure the identifiability of the
model. The common way is to choose the (ci)i with calibration from the subset {−1, 0, 1}.
Finally let us point both rules (5.4) and (5.5) we can take Hn as the subsets of the p-quantiles
of the vector distance D = Dij = ‖Xi −Xj‖.

6. A SIMULATION STUDY

This section isdevoted to some simulationexperiments allowing tohighlight thefinite sam-
ple performance of the proposed SFIM-regression in different situations. This empirical study
has two main purposes: The first one is to show the easy implantation of the SFIM in practice
and the second one is to control the effect of the principal settings of the study (such as, the
dependence’s level, the type of the functional index, the smoothing degree of the link func-
tions and the nature of the conditional distribution) in the efficiency of this functional model.
For these objects, we simulate a functional time series data using the following SFIM equation:

(6.1) Yi = r(〈θ,Xi〉) + εi for i = 1, ..., n = 150 ,

where the εi’s are generated independently according to a normal distribution N (0, 1). The
functional regressors are generated by the following formula:

Xi(t) = cos(Wi t) + sin(Wi + t) + .2(Wi t) , t ∈ [−π,+π] ,

and Wi is selected random variable. Three levels of dependency are considered that are
independent, quasi-associated (weak-dependency) and α-mixing (strong dependency). For
the independent case, we take (Wi)i as sample of N (0, 1). The quasi-associated case is
carried out by generating the process (Wi)i as non-strong mixing autoregressive of order 1.
It obtained by taking the coefficient of the autoregressive ρ = 0.1 and the innovation random
variable as Binom(10, 0.25). It is shown in [6] that this kind of process fails to satisfy the
α-mixing assumption. However, this process is quasi-associated because it can be treated
as linear process with positive coefficients. Concerning the strong dependency, we drown W
from an autoregressive of order 1 with ρ= 0.75 and the χ2(4) as innovation random variable.
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The strong mixing property of this kind of process has been proved by [2]. The following
Figure 1 shows the shape of n = 150 curves Xi’s for three situations (independent, quasi-
associated and strong dependency). The curves are discretized in the same grid formed by
100 points [−π, π].
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Figure 1: The shape of the regressors in the three cases.

In the first illustration, we control the effect of the degree of dependency on the pre-
diction’s quality using the single functional index regression. For this goal, we generate the
scalar response Yi by taking r1(x) = 3 log(1+x2) as link function and θ1 = e1 is the first ele-
ment of the Karhunen–Loève basis functions. Explicitly θ1 is the eigenfunction associated to
the first eigenvalue of the covariance operator of the process (Xi)i. It is eligible functionals
index because it belongs in the same Hilbert subspace of the functional variable and is an
element of Θn (see the previous section).

Undoubtedly, the easy implementation of any statistical approach in practice is closely
linked to the flexibility of the choice of parameters involved in this approach. At this stage
the bandwidth parameter hn and the functional index θ are the principal parameters of
the estimator. In this first illustration, we use the least squares cross-validation rule (5.4)
described in the previous section to determine θ. The mentioned rule is optimized over Θn

associated to the Karhunen–Loève basis functions (for k = 5). For sake of brevity, we use the
default smoothing parameter hn of R-package fda.usc and quadratic kernel on (0, 1).
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The obtained results are given in the Figure 2. The latter gives a global overview
on the behaviours of SFIM-predictor with respect the dependence’s level. In this figure we
plot the true values (Yi)i versus the predicted values for the three situations (independent,
quasi-associated and strong dependency).
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Figure 2: The SFIM-prediction results.

The results are not surprising. The SFIM-predictor has a satisfactory degree of perfor-
mance. However, its behavior is strongly affected by the correlation of the data. The quality
of prediction decreases with the degree of the dependency. The performance of the prediction
procedures is tested by comparing the Mean Square Prediction Error defined by:

MSPE =
1

150

150∑
i=1

(
Yi − r̂bθ1,n

(Xi)
)2

, θ̂1 being the optimizer of (5.4) .

For this first illustration, we have obtained 0.23 for the independent against 0.92 for the
quasi-associated and 1.78 for the strong mixing case.

Now, in order to give comprehensive empirical analysis for this semi-parametric model,
we examine, in this second illustration, the impact of the other characteristics (the type of the
functional index, the smoothing degree of the link functions and the nature of the conditional
distribution) on the SFIM-prediction. More precisely, we compare two link functions (smooth
and unsmooth (discontinuous in some points)), two functional indexes (eligible and ineligible)
and two conditional distributions (Gaussian and non-Gaussian). This comparison will be
carried out for the three previous dependence situations (independent, quasi-associated
and strong mixing). We keep the data of the first illustration as perfect situation of the
SFIM-prediction (eligible index, smooth link function and Gaussian conditional distribution).
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Now, for the other situations, we follow the same algorithm of the first illustration to generate
the output observations (Yi)i. To do that, we simulate with an arbitrary functional index
expressed by the normalised function

θ2(t) = 0.15 t sin(t)

and the link function

r2(x) = r1(x) 1[0,.5] − r21(x) 1[−1,−.5] .

The last factor of SFIM-prediction is the conditional distribution of Y given X. The latter is
explicitly given by the distribution of εi shifted by r(〈θ, x〉). For this second illustration, we
generate the white noise εi from normal mixture distribution (0.75)N(0, 1) + 0.25N(.5, 2).
To quantify the impact of the conditional distribution on the SFIM-prediction we compare the
two selector rules of the functional index (5.4) and (5.5). Of course both rules coincide when
the conditional distribution is Gaussian. Finally, we point out that we have used the same
kernel and the same bandwidth as in the first illustration and the conditional distribution
in the rule (5.5) is computed by the routine npcdist in the R-package np. The results on
this comparison study are presented in Table 1. It contains the MSPE for the six scenarios
mentioned before.

Table 1: Comparison of the MSPE errors of the SFIM-prediction.

Dependency Conditional SFIM CV-rule

case distribution Index Function LSCV MLCV

Independent

Gaussian

Eligible Smooth 0.23 0.24
Ineligible Smooth 0.71 0.76
Eligible Discontinuous 0.57 0.64
Ineligible Discontinuous 1.23 1.36

Normal Mixture

Eligible Smooth 0.41 0.33
Ineligible Smooth 0.93 0.67
Eligible Discontinuous 0.79 0.62
Ineligible Discontinuous 1.56 0.95

Quasi-associated

Gaussian

Eligible Smooth 0.92 0.97
Ineligible Smooth 1.62 1.71
Eligible Discontinuous 1.27 1.29
Ineligible Discontinuous 2.09 2.14

Normal Mixture

Eligible Smooth 1.18 0.97
Ineligible Smooth 1.54 1.18
Eligible Discontinuous 1.41 1.07
Ineligible Discontinuous 2.14 1.92

Strong mixing

Gaussian

Eligible Smooth 1.78 1.88
Ineligible Smooth 2.23 2.34
Eligible Discontinuous 2.17 2.25
Ineligible Discontinuous 2.57 2.59

Normal Mixture

Eligible Smooth 1.93 1.57
Ineligible Smooth 2.37 2.05
Eligible Discontinuous 2.18 1.93
Ineligible Discontinuous 2.68 2.15
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The simulation results of Table 1 show that the prediction is strongly affected by the
different features of the data (dependence degree) as well as the model (the smoothing prop-
erty of the link function). This statement incorporates the theoretical result that relates the
convergence rate of the estimator to the correlation of the data and the regularity assumption
of the model. In addition the choice of the functional index impact also the performance of
the prediction by the SFIM. In particular the two rules (5.4) and (5.5) are equivalent when
the conditional distribution is Gaussian while the selector criterion (5.5) is more adequate
for the mixture case. Overall, both criterion give a satisfactory level of accuracy even in the
critical situation when the index is illegible and the link function is discontinuous.

7. PROOFS OF THE INTERMEDIATE RESULTS

This section is devoted to the proofs of our results. The previously presented notation
continues to be used in the following.

Proof of Lemma 4.2

The proof of this lemma is based on inequality given in Lemma 4.1 on the variables

∆̂i(x) :=
1

nE
(
K1(x)

) [Ẑi − E(Ẑi)
]
, i = 1, ..., n ,

where Ẑi = ŶiKi(x), and we have

E(∆̂i) = 0 ,

‖∆̂i‖∞ ≤ 2 δn
nGθ(x,hn)

‖K‖∞ ,

Lip(∆̂i) ≤ 2 Lip(K)
δn

nGθ(x,hn)hn
,

r̂θ,2(x)− E
(
r̂θ,2(x)

)
=

n∑
i=1

∆̂i .

We start by evaluating the covariance term Cov
(
∆̂s1, ...,∆̂su,∆̂t1, ...,∆̂tv

)
, for all (s1, ..., su)∈Nu

and (t1, ..., tu) ∈ Nv with 1 ≤ s1 ≤ ··· ≤ su ≤ t1 ≤ ··· ≤ tv ≤ n. If m = t1 − su = 0, using the
fact that, for all p > 0,

E
(
Kp

1 (x)
)

= O
(
Gθ(x,hn)

)
,

and under the second part of (H2)(iii), we readily obtain∣∣∣Cov
(
∆̂s1 ... ∆̂su , ∆̂t1 ... ∆̂tv

)∣∣∣ ≤ (
1

nE
(
K1(x)

))u+v

E
(∣∣Ẑs1 ... Ẑ

2
su
... Ẑtv

∣∣)
≤
(
C δn‖K‖∞
nGθ(x,hn)

)u+v

E
(
Y 2
su
K2

su

)
≤
(

C δn
nGθ(x,hn)

)u+v

Gθ(x,hn) .
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If m = t1 − su > 0, by quasi-association of the sequence (Ẑn), we infer that

∣∣∣Cov
(
∆̂s1 ... ∆̂su , ∆̂t1 ... ∆̂tv

)∣∣∣ ≤ 4
(

δn Lip(K)
nGθ(x,hn)hn

)2( 2 δn‖K‖∞
nGθ(x,hn)

)u+v−2 u∑
i=1

v∑
j=1

λsi,tj

≤ Cu+v

(
Lip(K)
hn

)2( δn
nGθ(x,hn)

)u+v(
u ∧ v

)
λt1−su

≤ Cu+v

(
Lip(K)
hn

)2( δn
nGθ(x,hn)

)u+v

v e−am .(7.1)

On the other hand, making use of the first part of the condition (H2)(iii) we may write

∣∣∣Cov
(
∆̂s1 ... ∆̂su , ∆̂t1 ... ∆̂tv

)∣∣∣ ≤ (
C δn‖K‖∞
nGθ(x,hn)

)u+v−2 ∣∣∣Cov
(
∆̂su , ∆̂t1

)∣∣∣
≤
(
C δn‖K‖∞
nGθ(x,hn)

)u+v−2(∣∣∣E(∆̂su∆̂t1

)∣∣∣ + E
∣∣∆̂su

∣∣ E
∣∣∆̂t1

∣∣)
≤
(
C δn‖K‖∞
nGθ(x,hn)

)u+v−2( C

nGθ(x,hn)

)2
δ2n χθ(x,hn) .

It follows that

(7.2)
∣∣∣Cov

(
∆̂s1 , ..., ∆̂su , ∆̂t1 , ..., ∆̂tv

)∣∣∣ ≤ Cu+v

(
δn

nGθ(x,hn)

)u+v

χθ(x,hn) .

Moreover, by multiplying a τ -power of (7.1) and (1− τ)-power of (7.2) for some 1
4 < τ < 1

2 ,
we obtain an upper-bound of the covariance as follows for 1≤ s1 ≤ ··· ≤ su ≤ t1 ≤ ··· ≤ tv ≤ n:

∣∣∣Cov
(
∆̂s1...∆̂su, ∆̂t1...∆̂tv

)∣∣∣ ≤ Cu+v

(
δn

nGθ(x,hn)

)u+v(Lip(K)
hn

)2τ(√
χθ(x,hn)

)2(1−τ)

v e−aτ m.

So, by (H5), we have

∣∣∣Cov
(
∆̂s1 ... ∆̂su , ∆̂t1 ... ∆̂tv

)∣∣∣ ≤ (
C δn

nGθ(x,hn)

)u+v−2( C δn
nGθ(x,hn)

)2√
χθ(x,hn) v e−aτ m,

where

Mn =
C δn

nGθ(x,hn)
and Kn =

C χ
1/4
θ (x,hn) δn

nGθ(x,hn)
.

It remains to calculate Var

(
n∑

i=1

∆̂i

)
:

Var

(
n∑

i=1

∆̂i

)
=

(
1

nE
(
K1(x)

))2 ∑
i

∑
j

Cov
(
Ẑi, Ẑj

)
=

(
1

nE
(
K1(x)

))2 [
nVar

(
Ẑ1

)
+
∑

i

∑
j 6=i

Cov
(
Ẑi, Ẑj

)]

=

(
1

nE
(
K1(x)

))2 [
nT1 + Tij

]
.
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Now, under the assumption (H5), we obtain for the first term:

T1 = Var
(
Ẑ1

)
= E

(
Ŷ 2

1 K
2
1 (x)

)
−
(
E
(
Ŷ1K1(x)

))2

≤ E
(
Y 2

1 K
2
1 (x)

)
≤ E

(
K2

1 (x) E
(
Y 2

1 |X
))

≤ C E
(
K2

1 (x)
)
.

For all j ≥ 1, we have

(7.3) E
(
Kj

1(x)
)

= O
(
Gθ(x,hn)

)
,

and

T1 = Var
(
Ẑ1

)
= O

(
χ

1/2
θ (x,hn)

)
.

We readily obtain that

1

n
(
E
(
K1(x)

))2 T1 ≤
C χ

1/2
θ (x,hn)

nG2
θ(x,hn)

.(7.4)

For the second term, we have the following decomposition

Tij =
∑

i

∑
0<|i−j|≤un

Cov
(
Ẑi, Ẑj

)
+
∑

i

∑
|i−j|>un

Cov
(
Ẑi, Ẑj

)
= J1 + J2 ,

where (un) is a sequence of positive integer and

lim
n−→∞

un = ∞ .

Now, under the assumptions (H2), we have

|J1| =
∑

i

∑
0<|i−j|≤un

∣∣Cov
(
Ẑi, Ẑj

)∣∣ ≤ nun

[
max
i6=j

∣∣∣E(Ki(x)Kj(x)
)∣∣∣+ (E

(
K1(x)

))2]
≤ C nun χθ(x,hn) .

Making use of the condition (H2)(i), we infer that

|J2| =
∑

i

∑
|i−j|>un

∣∣Cov
(
Ẑi, Ẑj

)∣∣ ≤ C δ2n

(
Lip(K)
hn

)2 ∑
i

∑
|i−j|>un

λi,j

≤ C n δ2n h
−2
n e−aun .

This implies that

|Tij | ≤
n∑

i=1

∑
i6=j

∣∣Cov
(
Ẑi, Ẑj

)∣∣ ≤ C
(
nun χθ(x,hn) + n δ2n h

−2
n e−aun

)
.

Next, taking

un =
1
a

log
(

δ2n a

h2
n χθ(x,hn)

)
.
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Observe that (H5) insure that √
χθ(x,hn) log(δn) → 0 ,

which allows to write that

(7.5) Tij = o
(
nχ

1/2
θ (x,hn)

)
→ 0 .

It follows that

Var

(
n∑

i=1

∆̂i

)
= O

(
χ

1/2
θ (x,hn)

nG2
θ (x,hn)

)
.

The conditions of Lemma 4.1 are verified for

Kn =
C χ

1/4
θ (x,hn) δn

nGθ(x,hn)
, Mn =

C δn
nGθ(x,hn)

,

An =
χ

1/2
θ (x,hn)

nG2
θ (x,hn)

,

Bn =
(

16nK2

9An (1− e−β)
∨ 1
)(

2 (K ∨M)
1− e−β

)
=

δn
nGθ(x,hn)

.

So, we apply the inequality in [22] to the random variables ∆̂i to infer that

P

∣∣∣r̂θ,2(x)− E
(
r̂θ,2(x)

)∣∣∣ > ε

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)

 = P

∣∣∣∣∣
n∑

i=1

∆̂i

∣∣∣∣∣ > ε

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)


≤ exp

(
−ε2 χ1/2

θ (x,hn) log n
nG2

θ (x,hn)Lθ(n)

)
,

where

Lθ(n) =

 χ
1/2
θ (x,hn)

nG2
θ (x,hn)

+
(

δn
nG2

θ (x,hn)

)1
3

(
χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

)5
6

.
Then we finally obtain that

P

∣∣∣r̂θ,2(x)− E(r̂θ,2)
∣∣∣ > ε

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)

 ≤ exp

 −ε2 log n

C +
(
δ2n χ

−1/2
θ (x,hn) log5n

)1
6


≤ C1 exp

(
−ε2 log(n)

)
.

The proof is achieved by a suitable choice of ε.

Proof of Lemma 4.3

The proof of this lemma is similar to the proof of the previous Lemma 4.2. Since Ŷi = 1,
it suffices to replace ∆̂i by

∆̃i =
1

nE
(
K1(x)

) [Ki(x)− E
(
Ki(x)

)]
, i = 1, ..., n .
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Thus we obtain, under (H1)–(H5),

P

(∣∣r̂θ,0(x)− 1
∣∣ > ε

√
log n

nGθ(x,hn)

)
= P

∣∣∣∣∣
n∑

i=1

∆̃i

∣∣∣∣∣ > ε

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)


≤ C1

′ exp
(
−ε2 log(n)

)
.

Thus the proof is complete.

Proof of Lemma 4.4

Notice that we have{∣∣r̂θ,0(x)
∣∣ ≤ 1

2

}
⊂
{∣∣r̂θ,0(x)− 1

∣∣ > 1
2

}
,

that implies that

P
(∣∣r̂θ,0(x)

∣∣ ≤ 1
2

)
≤ P

(∣∣r̂θ,0(x)− 1
∣∣ > 1

2

)
.

Under the hypothesis (H1)–(H5) and by applying Lemma 4.3, we deduce that

∑
n

P
(∣∣r̂θ,0(x)

∣∣ ≤ 1
2

)
≤
∑

n

P
(∣∣r̂θ,0(x)− 1

∣∣ > 1
2

)
< ∞ .

Then, for η = 1
2 , we have

∑
n

P
(∣∣r̂θ,0(x)

∣∣≤ η
)
<∞. Thus the proof is complete.

Proof of Lemma 4.5

One can easily see that we have

∣∣∣rθ(x)− E
(
r̂θ,1(x)

)∣∣∣ =

∣∣∣∣∣rθ(x)− E

(
1

nE
(
K1(x)

) n∑
i=1

YiKi(x)

)∣∣∣∣∣
=

1
E
(
K1(x)

) [∣∣∣rθ(x) E
(
K1(x)

)
− E

(
Y1K1(x)

)∣∣∣]
=

1
E
(
K1(x)

) E
[(∣∣rθ(x)− rθ(X1)

∣∣)K1(x)
]
≤ C hβ

n .

This readily implies that we have

rθ(x)− E(r̂θ,1) = O
(
hβ

n

)
.

Thus the proof is complete.
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Proof of Lemma 4.6

We first observe that we have

∣∣E(r̂θ,2)− E(r̂θ,1)
∣∣ =

1
nEK1(x)

∣∣∣∣∣E
(

n∑
i=1

Yi 1{|Yi|>δn}Ki(x)

)∣∣∣∣∣
≤ E

(
|Y1|1|Y1|>δn

K1(x)
)(

E
(
K1(x)

))−1
.

The Hölder’s inequality allows to write that, for α = p
2 and β such that 1

α + 1
β = 1,

∣∣∣E(r̂θ,2(x)
)
− E

(
r̂θ,1(x)

)∣∣∣ ≤ 1
Gθ(x,hn)

E1/α
[
|Y α|1{Y≥δn}

]
E1/β

[
Kβ

1

]
≤ 1

Gθ(x,hn)
δ−1
n E1/α

[
|Y p|

]
G

1/β
θ (x,hn)

≤ C δ−1
n G

(1−β)/β
θ (x,hn) .

Hence, we obtain from (H5) that

∣∣∣E(r̂θ,2(x)
)
− E

(
r̂θ,1(x)

)∣∣∣ = o


√√√√χ

1/2
θ (x,hn) log n
nG2

θ (x,hn)

 .

Thus the proof is complete.

Proof of Lemma 4.7

By (H5) and we apply the Markov’s inequality to show that, ∀ ε > 0,

P
(∣∣r̂θ,1(x)− r̂θ,2(x)

∣∣ > ε
)

= P

(
1

nEK1(x)

∣∣∣∣∣
n∑

i=1

Yi 1{|Yi|>δn}Ki(x)

∣∣∣∣∣ > ε

)

≤ nP
(
|Y1|> δn

)
≤ n δ−p

n E
(
|Y |p

)
≤ C n δ−p

n .

Since ∑
n≥1

n δ−p
n < ∞ ,

then there exists ε0 > 0, such that

(7.6)
∑
n≥1

P

∣∣r̂θ,1(x)− r̂θ,2(x)
∣∣ > ε0

√√√√χ
1/2
θ (x,hn) log n
nG2

θ (x,hn)

 < ∞ ,

which completes the proof of the lemma.
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Proof of Lemma 4.8

Let us introduce the following sum Sn =
n∑

i=1

Lni, where

Lni =

√
Gθ(x,hn)

√
n E

(
K1(x)

) ((Ŷi − rθ(x)
)
Ki(x)− E

((
Ŷi − rθ(x)

)
Ki(x)

))
.

Therefore

Sn =
√
nGθ(x,hn)

((
r̂θ,2(x)− rθ(x)

)
r̂θ,0(x)− E

(
r̂θ,2(x)− rθ(x)

)
r̂θ,0(x)

)
.

Thus, our claimed result is now

(7.7) Sn → N
(
0, σ2

θ(x)
)
.

To do that, we use the basic technique of [9] for which we split Sn into

Sn = Tn + T ′n + ζk ,

with

Tn =
k∑

j=1

ηj and T ′n =
k∑

j=1

ξj ,

where

ηj :=
∑
i∈Ij

Lni , ξj :=
∑
i∈Jj

Lni , ζk :=
n∑

i=k(p+q)+1

Lni ,

with

Ij =
{

(j −1) (p+ q) + 1, ..., (j −1) (p+ q) + p
}

,

Jj =
{

(j −1) (p+ q) + p+ 1, ..., j (p+ q)
}

,

and p= pn, q = qn two sequences of natural numbers tending to ∞, such that

p = O
(
G−1

θ (x,hn)
)
, q = o(p) and k =

⌊
n

p+ q

⌋
,

where b·c stands for the integer part. Firstly, observe that we have kq
n → 0, and kp

n → 1,
q
n → 0, which imply that p

n → 0 as n→∞. Now, our asymptotic normality results are a
consequence of the following statements:

(7.8) E(T ′n)2 + E(ζk)2 → 0

and

(7.9) Tn → N
(
0, σ2

θ(x)
)
.

For (7.8), we write

E(T ′n)2 = k Var(ξ1) + 2
∑

1≤i<j≤k

∣∣Cov(ξi, ξj)
∣∣



Single index regression model for functional quasi-associated time series data 627

and

Var(ξ1) ≤ q Var(Ln1) + 2
∑

1≤i<j≤q

∣∣Cov(Lni, Lnj)
∣∣ .

Similarly to (7.4), we infer that

Var(Ln1) = O
(
n−1

)
,

which implies that

kq Var(Ln1) = O

(
kq

n

)
→ 0 , as n→∞ .

On the other hand, we use the same arguments as those used in (7.5) to conclude that

k
∑

1≤i<j≤q

∣∣Cov(Lni, Lnj)
∣∣ = o

(
kq

n

)
→ 0 , as n→∞ .(7.10)

Thus, the limit of the first term of E(T ′n)2 is equal to 0. Next, by using stationarity, we can
write

∑
1≤i<j≤k

∣∣Cov(ξi, ξj)
∣∣ =

k−1∑
l=1

(k− l)
∣∣Cov(ξ1, ξl+1)

∣∣
≤ k

k−1∑
l=1

∣∣Cov(ξ1, ξl+1)
∣∣

≤ k
k−1∑
l=1

∑
(i,j)∈J1×Jl+1

Cov(Lni, Lnj) .

It is clear that, for all (i, j) ∈ J1×Jj , we have |i− j| ≥ p+ 1 > p, and then

∑
1≤i<j≤k

∣∣Cov(ξi, ξj)
∣∣ ≤ k

C γ2
n

nh2
nGθ(x,hn)

p∑
i=1

k(p+q)∑
j=2p+q+1,
|i−j|>p

λi,j

≤ Ck p γ2
n

nh2
nGθ(x,hn)

λp

≤ C γ2
n

G3
θ (x,hn)

e−ap → 0 .

Finally, we get
E(T ′1)

2 → 0 as n→∞ .

Since
(
n− k(p+ q)

)
≤ p, we have by the same manner

E(ζk)2 ≤
(
n− k(p+ q)

)
Var(Ln1) + 2

∑
1≤i<j≤n

∣∣Cov(Lni, Lnj)
∣∣

≤ p Var(Ln1) + 2
∑

1≤i<j≤n

∣∣Cov(Lni, Lnj)
∣∣

≤ C p

n
+ o(1) .

Hence,
E(ζk)2 → 0 , as n→∞ .
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So, it remains to proof the asymptotic normality (7.9). The proof is standard. Indeed, it is
based in the following assertions∣∣∣∣∣E(eitPk

j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣→ 0 ,(7.11)

and

k Var(η1) → σ2
θ(x) , k E

(
η2
1 1{η1>εσθ(x)}

)
→ 0 .(7.12)

To prove (7.11), notice that∣∣∣∣∣E(eitPk
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣
≤
∣∣∣∣E(eitPk

j=1 ηj

)
− E

(
eit
Pk−1

j=1 ηj

)
E
(
eitηk

)∣∣∣∣ +

∣∣∣∣∣E(eitPk−1
j=1 ηj

)
−

k−1∏
j=1

E
(
eitηj

)∣∣∣∣∣
=
∣∣∣∣Cov

(
eit
Pk−1

j=1 ηj , eitηk

)∣∣∣∣ +

∣∣∣∣∣E(eitPk−1
j=1 ηj

)
−

k−1∏
j=1

E
(
eitηj

)∣∣∣∣∣(7.13)

and, successively, we have∣∣∣∣∣E(eitPk
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣
≤
∣∣∣∣Cov

(
eit
Pk−1

j=1 ηj , eitηk

)∣∣∣∣ +
∣∣∣∣Cov

(
eit
Pk−2

j=1 ηj , eitηk−1

)∣∣∣∣ + ··· +
∣∣∣Cov

(
eitη2 , eitη1

)∣∣∣ .(7.14)

The use of the quasi-associated propriety permits to write that∣∣∣Cov
(
eitη2 , eitη1

)∣∣∣ ≤ C t2 γ2
n

nG3
θ (x,hn)

∑
i∈I1

∑
j∈I2

λi,j .

Applying this inequality to each term on the right-hand side of (7.14) in order to obtain∣∣∣∣∣E(eitPk
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣
≤ C t2 γ2

n

nG3
θ (x,hn)

∑
i∈I1

∑
j∈I2

λi,j +
∑

i∈I1∪I2

∑
j∈I3

λi,j + ··· +
∑

i∈I1∪···∪Ik−1

∑
j∈Ik

λi,j

 .

Observe that for every 2 ≤ l ≤ k− 1, (i, j) ∈ Il×Il+1, we have |i− j| ≥ q+ 1 > q, then∑
i∈I1∪···∪Il−1

∑
j∈Il

λi,j ≤ p λq .

Therefore, inequality (7.13) becomes∣∣∣∣∣E(eitPk
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣ ≤ C t2 γ2
n

nG3
θ (x,hn)

k p λq ≤ C t2 γ2
n

nG3
θ (x,hn)

k p e−aq → 0 .
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Concerning (7.12), we use the same arguments as in to conclude that

lim
n→∞

k Var(η1) = lim
n→∞

k pVar(Ln1) .

On the other hand

Var(Ln1) =
Gθ(x,hn)
nE2

(
K1(x)

) Var
((
Ŷ1− rθ(x)

)
K1(x)

)
.

It can be written as

Var(Ln1) =
Gθ(x,hn)
nE2

(
K1(x)

) {E
(
K2

1 (x)
(
Y1− rθ(x)

)2)− E
[
K2

1 (x)
(
Y1− rθ(x)

)2
1|Y1|>γn

]}
− Gθ(x,hn)
nE2

(
K1(x)

) (E
(
K1(x)

(
Y1− rθ(x)

)
1|Y1|<γn

))2
.

By combining the same ideas used in the proof of Lemma 4.6 to those used by [14], we show
that

(7.15) Var(Ln1) =
σ2

θ(x)
n

+ o

(
1
n

)
.

Therefore,

k Var(η1) =
k p σ2

θ(x)
n

+ o

(
kp

n

)
→ σ2

θ(x) .

For the second part of (7.12), we use the fact that

|η1| ≤ Cp |Ln1| ≤
Cγn p√
nGθ(x,hn)

,

and Tchebychev inequality to get

k E
(
η2
1 1{η1>εσθ(x)}

)
≤ Cγ2

n p
2k

nGθ(x,hn)
P
(
η1> εσθ(x)

)
≤ Cγ2

n p
2k

nGθ(x,hn)
Var(η1)
ε2σ2

θ(x)
= O

(
γ2

n p
2

nGθ(x,hn)

)
,

which completes the proof.
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1. INTRODUCTION

Recently, many distributions have been defined for modeling lifetime data. The Weibull
distribution has survival and hazard rate functions in closed-forms; see Murthy et al. [14].
Gupta and Kundu [8] introduced the exponentiated exponential (EE) distribution as an
alternative to the gamma and Weibull distributions. It has many properties similar to those
of the gamma and Weibull with closed-form survival and hazard rate functions; see Gupta
and Kundu [9]. The hazard rate functions (hrfs) of the gamma, Weibull and EE distributions
can not be upside-down bathtub and bathtub shapes but only monotonically increasing,
monotonically decreasing or constant shapes.

Taking into account these points, we define a new two-parameter alternative to the
above distributions to overcome the above-mentioned drawback. Further, it is common in
practical situations to use an appropriate regression based on an asymmetric distribution
for censored data and survival time data. Recently, various papers have been published on
that subject such as those by Lanjoni et al. [10], Cordeiro et al. [5], among others. Another
objective of this work is to propose a location-scale regression based on the logistic-exponential
distribution named the log-logistic exponential regression. It is a new regression that can be
applied to data sets with the presence of censored data.

The paper is outlined as follows. In Section 2, the new logistic-G (LG) family is intro-
duced and some of its structural properties are studied. A special model of the LG family
called the logistic-exponential (LE) distribution is presented in Section 3. Some of its math-
ematical properties are addressed in Section 4. The parameters of the LE distribution are
estimated by maximum likelihood (ML) in Section 5. Further, a Monte Carlo simulation
study is conducted to assess the performance of the ML method. An extended regression
model is proposed and studied in Section 6. In Section 7, the usefulness of the new models is
shown empirically by means of three real data sets. Finally, Section 8 offers some concluding
remarks.

2. THE NEW LG FAMILY

Alzaatreh et al. [2] defined the T-X family of distributions as follows. Let r(t) be the
probability density function (pdf) of a random variable (rv) T ∈ [a,b] for −∞≤ a < b <∞
and let W (·) : [0, 1] → R be an adequate link function. The cumulative distribution function
(cdf) of the T-X family is

F (x; ξ) =
∫ W [G(x;ξ)]

a
r(t) dt ,

where ξ is the parameter vector of G.

Based on the above definition, if the function W
[
G(x;ξ)

]
is monotonically non-increasing

with W (0) → b and W (1) → a, one can redefine the T-X family cdf as

(2.1) F (x; ξ) = 1−
∫ W [G(x;ξ)]

a
r(t) dt .
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Let T be a logistic rv with pdf r(t) = α e−αt(1+e−αt)−2 and support in R, where α > 0.
By setting W

[
G(x; ξ)

]
= log

{
− log

[
G(x; ξ)

]}
, a monotonically non-increasing function in

G(x; ξ), the cdf of the LG family follows from (2.1):

(2.2) F (x;α, ξ) = 1−
[
1 +

{
− log

[
G(x; ξ)

]}−α
]−1

, x ∈ R .

If g(x; ξ) = dG(x; ξ)/dx, the associated pdf to (2.2) is

(2.3) f(x;α, ξ) =
α g(x; ξ)

{
− log

[
G(x; ξ)

]}−α−1

G(x; ξ)
[
1 +

{
− log

[
G(x; ξ)

]}−α
]2 .

The dependence on the baseline vector ξ and α is omitted and then G(x) = G(x; ξ)
and f(x) = f(x;α, ξ). Hereafter, a rv with pdf (2.3) is denoted by X ∼ LG(α, ξ).

The hrf of X has the form

(2.4) h(x) =
α g(x)

{
− log

[
G(x)

]}−α−1

G(x)
[
1 +

{
− log

[
G(x)

]}−α
] .

The quantile function (qf) of X follows by inverting F (x) = u in (2.2):

(2.5) Q(u) = QG

(
e−v
)
,

where QG(v) = G−1(v) is the parent qf and v =
[
(1−u)/u

]1/α. Then, the solution of the
nonlinear equation X = Q(U) has density (2.3) if U has a uniform U(0, 1) distribution.

Equation (2.5) gives a simple interpretation for the LG family. If T has a logistic density
r(t) with shape parameter α, the LG family is obtained from the qf of the G distribution by
X = QG

(
e−eT )

.

Proposition 2.1. Let c = inf
{
x : G(x) > 0

}
. The asymptotics of Equations (2.2),

(2.3) and (2.4) when x → c are:

F (x) ∼
{
− log

[
G(x)

]}−α
,

f(x) ∼ α g(x)
G(x)

{
− log

[
G(x)

]}−α−1
,

h(x) ∼ α g(x)
G(x)

{
− log

[
G(x)

]}−α−1
.

Proposition 2.2. The asymptotics of Equations (2.2), (2.3) and (2.4) when x →∞
are given by

1− F (x) ∼ Ḡ(x)α , f(x) ∼ α g(x) Ḡ(x)α−1 and h(x) ∼ α g(x)
Ḡ(x)

.
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Theorem 2.1. The Shannon’s entropy of the LG family takes the form

(2.6) ηX = E

[
log
{

g
[
G−1

(
e−eT )]}]−B

(
1− 1

α
, 1 +

1
α

)
− log α + 2 ,

where B(·, ·) is the beta function.

Proof: Alzaatreh et al. [2] obtained the Shannon entropy of the T-X family, where
W
[
G(x)

]
= − log

[
1−G(x)

]
. One can use their same technique to obtain this entropy for the

LG family in (2.2) when W
[
G(x)

]
= log

{
− log

[
G(x)

]}
as

(2.7) ηX = E
[
log
{

g
[
G−1

(
e−eT )]}]− E

(
eT
)

+ µT + ηT ,

where µT and ηT are the mean and Shannon entropy of the rv T , respectively. If T has the
logistic distribution, (2.6) follows easily from (2.7).

2.1. Linear representation

We can rewrite Equation (2.2) as

(2.8) F (x) =

{
− log

[
G(x)

]}−α

1 +
{
− log

[
G(x)

]}−α .

The power series
{
− log

[
G(x)

]}−α =
∑∞

k=0 pk

[
1−G(x)

]k holds, where p0 = 1, p1 =−α/2,
p2 = (3 α2− 5 α)/24, p3 = (−α3 +5 α2− 6 α)/48, etc. The radius of convergence of this series
is infinite for 0 < G(x) < 1 and then it converges for all real numbers x with great rapidity.

Then, we can express Equation (2.8) as a ratio of two convergent power series of G(x):

F (x) =

∞∑
k=0

pk

[
1−G(x)

]k
∞∑

k=0

qk

[
1−G(x)

]k =
∞∑

k=0

bk

[
1−G(x)

]k
.

Here, q0 = 1 + p0, b0 = p0/q0 and, for k ≥ 1, qk = pk and

bk =
1
q0

(
pk −

1
q0

k∑
r=1

qr bk−r

)
.

Further, F (x) can be rewritten as

F (x) =
∞∑

k=0

bk

[
1−G(x)

]k =
∞∑

j=0

∞∑
k=j

(−1)j bk

(
k

j

)
G(x)j
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and then

(2.9) F (x) =
∞∑

j=0

dj G(x)j ,

where dj =
∑∞

k=j (−1)j bk

(
k

j

)
and G(x)j denotes the exponentiated-G (“exp-G” for short)

cdf with power parameter j.

Hence, the density of X has a linear representation in terms of exp-G densities, namely

(2.10) f(x) =
∞∑

j=0

dj+1 hj+1(x) ,

where hj+1(x) = (j +1) g(x)G(x)j is the exp-G density with power parameter j +1. Some
exp-G properties are addressed in more than 50 papers cited by Tahir and Nadarajah [19].

Clearly, some mathematical properties of the LG family can be derived from Equation
(2.10) and those exp-G properties.

2.2. Moments

Let Yj+1 be a rv having density hj+1(x). The n-th moment of X follows from (2.10) as

E(Xn) =
∞∑

j=0

dj+1 E(Y n
j+1) =

∞∑
j=0

(j +1) dj+1 τn,j ,(2.11)

where τn,j =
∫∞
−∞ xnG(x)j g(x) dx =

∫ 1
0 QG(u)nuj du. Cordeiro and Nadarajah [4] determined

the quantity τn,j for the normal, beta, gamma and Weibull distributions. Their developments
can be used to other distributions.

The n-th incomplete moment of X, say mn(y) =
∫ y
0 xnf(x) dx, is given by

mn(y) =
∞∑

j=0

dj+1

∫ y

0
xn hj+1(x) dx

=
∞∑

j=0

(j +1) dj+1

∫ G(y)

0
QG(u)n uj du .(2.12)

The main application of the first incomplete moment m1(y) refers to the deviations
from the mean and median and the Bonferroni and Lorenz curves of X. A further important
application is related to the mean residual life (MRL) of X, i.e. the function measuring the
remaining life expectancy at age t, given by ν(t) =

[
1−m1(t)

]/[
1−F (t)

]
− t. This function is

like the density and generating functions: for a distribution with a finite mean, it completely
determines the distribution. The use of the MRL is a helpful tool in model building.
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2.3. Generating function

The moment generating function (mgf) M(t) = E(etX) of X can be determined from
(2.10) as

M(t) =
∞∑

j=0

dj+1 Mj+1(t) =
∞∑
i=0

(j +1) dj+1 ρ(t, j),(2.13)

where Mj+1(t) is the mgf of Yj+1 and ρ(t, j) =
∫ 1
0 exp

[
t QG(u)

]
uj du.

Hence, M(t) can be determined from the exp-G generating function. The characte-
ristic function of X is simply M(−i t), where i =

√
−1, and it always exists, even when the

generating function does not.

3. THE LE DISTRIBUTION

Consider the baseline exponential with cdf G(x) = 1− e−λx. The cdf of the LE distri-
bution can be determined from (2.2) as

(3.1) F (x) = F (x;α, λ) = 1−
[
1 +

{
− log

(
1−e−λx

)}−α
]−1

.

Hereafter, let X ∼ LE(α, λ) have the cdf (3.1). The pdf of X is

(3.2) f(x) =
α λ
{
− log

(
1−e−λx

)}−α−1

(
eλx−1

) [
1 +

{
− log

(
1−e−λx

)}−α
]2 .

The hrf of X becomes

(3.3) h(x) =
α λ
{
− log

(
1−e−λx

)}−α−1

(
eλx−1

) [
1 +

{
− log

(
1−e−λx

)}−α
] .

Equation (3.1) has two parameters α and λ such as the gamma, log-normal, Weibull
and EE distributions. The LE model has closed-form survival and hazard functions like the
Weibull and EE distributions.

Figures 1 and 2 display some plots of the density and hrf of X for selected values
of α when λ = 1. Figure 1 shows that the LE density is a right-skewed distribution. The
plots in Figure 2 indicate that the hrf of X can have decreasing failure rate (DFR), bathtub
(BT) and decreasing-increasing-decreasing (DID) shapes. The limiting behavior of this hrf is
limx→∞ h(x) = α and limx→0 h(x) =∞, and it always approaches α when X goes to infinity.
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Figure 1: Plots of the LE density varying α with λ = 1.
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Figure 2: Plots of the LE hrf varying α for λ = 1.
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4. PROPERTIES OF LE DISTRIBUTION

In this section, we obtain some properties of the LE distribution.

4.1. Asymptotics and shapes

Proposition 4.1. The asymptotics of the cdf, pdf and hrf of X when x → 0 are:

F (x) ∼ 1−
{

1 +
[
− log(λ x)

]−α
}−1

,

f(x) ∼ α

x

[
− log(λ x)

]−α−1
{

1 +
[
− log(λ x)

]−α
}−2

,

h(x) ∼ α

x

[
− log(λ x)

]−α−1
{

1 +
[
− log(λ x)

]−α
}−1

.

Proposition 4.2. The asymptotics of the cdf, pdf and hrf of X when x →∞ are

1− F (x) ∼ e−αλx , f(x) ∼ αλ e−αλx and h(x) ∼ αλ .

4.2. Transformation

If Y has the logistic distribution with parameter α, then X =−λ−1 log
(
1−e−eY )

follows
the LE(α, λ) model.

4.3. Mode

Lemma 4.1. The modes of the LE density are the solutions of k(x) = 0, where

k(x) = −λ− λ

eλx−1

1− α+1{
− log

(
1−e−λx

)} +
2 α
{
− log

(
1−e−λx

)}−α−1

1 +
{
− log

(
1−e−λx

)}−1

 .

4.4. Quantile function

The qf of X is Q(u) =−λ−1 log(1−e−v), u ∈ (0, 1), where v =
[
(1−u)/u

]1/α.
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4.5. Shannon entropy

Theorem 4.1. The Shannon entropy of X is

ηX =
λ

λ−1
−B

(
1− 1

α
, 1+

1
α

)
− log α + 2 .(4.1)

Proof: For the LE distribution, the result holds:

E
[
log
{

g
[
G−1

(
e−eT )]}]

= E(eT ) =
λ

λ−1
.

Equation (4.1) follows by substituting the above result in (2.6).

4.6. Moments and generating function

The LE density comes from (2.10) as

f(x) =
∞∑

j=0

dj+1 (j +1) λ e−λx
(
1−e−λx

)j
.

The moments of X follow from the EE distribution and (2.11):

µ′n = E(Xn) = n!
∞∑

j,l=0

(−1)l (j +1) dj+1 A(j, l)
λj+1 (l+1)n+1

,(4.2)

where A(j, l) = j (j−1) ··· (j− l)/l! .

The skewness and kurtosis of X for some values of α by taking λ = 1 are displayed
in Figure 3. The distribution of X is right-skewed. For fixed λ, the skewness is a decreas-
ing function of α, whereas the kurtosis decreases steadily towards asymptotic limits when
α increases.

The n-th incomplete moment of X is obtained from (2.12):

mn(y) = λ−n
∞∑

j=0

(j +1) dj+1 A∗n(j +1) ,(4.3)

where

A∗n(j +1) =
∞∑

p=0

(−1)p

(p+1)r+1

(
j

p

)
γ
(
n+1, (p+1) λy

)
, n = 1, 2, ... ,

and γ(p, x) =
∫ x
0 wp−1 e−w dw (for p > 0) is the incomplete gamma function.

The mgf of X follows from (2.13) as

(4.4) M(t) = Γ
(

1− t

λ

) ∞∑
j=0

(j +1)! dj+1

Γ
(
j + 2− t

λ

) .

Equations (4.2), (4.3) and (4.4) are the main results of this section.
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Figure 3: (a) Skewness and (b) Kurtosis plots of X for λ = 1.

4.7. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, ..., Xn is a random sample from the LE distribution. Let Xi:n denote the i-th
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K
n−i∑
j=0

(−1)j

(
n− i

j

)
f(x) F (x)j+i−1 ,

where K = 1/B(i, n− i+1).

Gradshteyn and Ryzhik [7] provided a power series raised to a positive integer n:( ∞∑
i=0

ai u
i

)n

=
∞∑
i=0

bn,i u
i ,(4.5)

where the coefficients bn,i (for i = 1, 2, ...) satisfy the recurrence equation (with bn,0 = an
0 )

bn,i = (i a0)−1
i∑

m=1

[
m(n+1)− i

]
am bn,i−m .

The density function of Xi:n can be reduced to

fi:n(x) =
∞∑

r,k=0

mr,k πEE(x;λ, r+k+1) ,(4.6)

where πEE(x;λ, r+k+1) (for r, k ≥ 0) denotes the EE density function with parameters λ

and r+k+1, and

mr,k =
n! (r+1) (i−1)! dr+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j!
.
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Here, dr is defined in (2.9) and the quantities fj+i−1,k follow recursively from (for k ≥ 1)

fj+i−1,k = (k d0)−1
k∑

m=1

[
m (j + i)− k

]
dm fj+i−1,k−m ,

and fj+i−1,0 = dj+i−1
0 .

Equation (4.6) shows that the pdf of the LE order statistics is a double linear combi-
nation of EE densities. Therefore, several mathematical quantities of these order statistics
can be derived from this result.

5. ESTIMATION

The maximum likelihood estimates (MLEs) enjoy desirable properties for construct-
ing confidence intervals. We consider the estimation of the unknown parameters of the LE
distribution by the maximum likelihood method. Further works could be addressed using
different methods to estimate the LE parameters such as moments, least squares, weighted
least squares, bootstrap, Jackknife, Cramér–von-Mises, Anderson–Darling, Bayesian, among
others, and compare the estimators from these methods.

Let x1, ..., xn be n observed values from the LE distribution given in Equation (3.2)
with vector of parameters Θ = (α, λ)>. The log-likelihood ` = `(Θ) for Θ is

` = n log(αλ)−
n∑

i=1

log
(
eλxi−1

)
− (α+1)

n∑
i=1

log
{
− log

(
1−e−λxi

)}
− 2

n∑
i=1

log
[
1 +

{
− log

(
1−e−λxi

)}−α
]

.(5.1)

Equation (5.1) can be maximized either directly by using well-known platforms such as
R (optim function), SAS (PROC NLMIXED) and Ox program (MaxBFGS subroutine).

5.1. Simulation results

We examine the accuracy of the MLEs of the parameters of the LE distribution using
Monte Carlo simulations. The simulation analysis is carried out by generating 5,000 samples
for some sample sizes and parameter combinations. Table 1 gives the average biases (Biases)
of the MLEs, mean square errors (MSEs), coverage probabilities (CPs) and average widths
(AWs) of 95% confidence intervals for α and λ. These results indicate that the MLEs are
accurate. The biases, MSEs and AWs of X are small for large samples. Further, the CPs
are quite close to the 95% nominal levels. So, we conclude that the MLEs can be used for
estimating and constructing confidence intervals for the model parameters.
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Table 1: Simulation results.

Parameter n
α = 0.3, λ = 1 α = 0.8, λ = 1

Bias MSE CP AW Bias MSE CP AW

α

25 −0.006 0.003 0.92 0.210 −0.091 0.029 0.92 0.599
50 −0.004 0.002 0.93 0.149 −0.070 0.016 0.96 0.437
75 −0.004 0.001 0.94 0.121 −0.073 0.013 0.96 0.354

100 −0.002 0.001 0.95 0.106 −0.067 0.011 0.95 0.309

λ

25 0.013 0.018 0.93 0.510 −0.039 0.083 0.95 0.988
50 0.011 0.009 0.95 0.360 −0.035 0.044 0.96 0.707
75 0.006 0.006 0.96 0.292 −0.059 0.028 0.95 0.559

100 0.005 0.004 0.95 0.254 −0.053 0.021 0.95 0.488

Parameter n
α = 1.5, λ = 1 α = 3, λ = 1

Bias MSE CP AW Bias MSE CP AW

α

25 0.175 0.149 0.96 1.362 0.156 0.400 0.94 2.260
50 0.111 0.067 0.95 0.932 0.084 0.188 0.94 1.565
75 0.097 0.046 0.96 0.758 0.048 0.104 0.95 1.267

100 0.090 0.036 0.95 0.653 0.044 0.084 0.96 1.095

λ

25 0.002 0.068 0.93 0.968 0.020 0.025 0.92 0.572
50 −0.007 0.034 0.95 0.677 0.011 0.012 0.93 0.401
75 −0.013 0.021 0.96 0.551 0.007 0.007 0.96 0.326

100 −0.027 0.016 0.96 0.465 0.002 0.005 0.95 0.280

6. THE LOG-LOGISTIC EXPONENTIAL REGRESSION
WITH CENSORED DATA

If X follows the LE distribution (3.2), Y = log(X) will have the log-logistic exponential
(LLE) distribution. The density function of Y (for y ∈ R), parameterized in terms of λ = e−µ,
takes the form

f(y) =
α exp

[
(y−µ)− exp(y−µ)

] [
− log

{
1− exp

[
− exp(y−µ)

]}]−α−1

{
1− exp

[
− exp(y−µ)

]} {
1 +

[
− log

{
1− exp

[
exp(y−µ)

]}]−α
}2 ,(6.1)

where µ ∈ R is a location parameter and α is a positive shape parameter.

We refer to Equation (6.1) as the LLE distribution, say Y ∼ LLE(α, µ). Thus,

if X ∼ LE(α, λ) then Y = log(X) ∼ LLE(α, µ) .

Some shapes of the density function of Y are given in Figure 4.

The survival function of Y is

S(y) =
1

1 +
[
− log

{
1− exp

[
− exp(y−µ)

]}]−α .(6.2)



On analyzing non-monotone failure data 645

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

y

f(
y)

α=1.0 
α=1.5 
α=2.5 
α=3.5 
α=4.5 

−6 −4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

y

f(
y)

α=0.1 
α=0.3 
α=0.5 
α=0.7 
α=0.9 

(a) (b)

Figure 4: The LLE density function. (a) For different values of α > 1 with µ = 0.
(b) For different values of α < 1 with µ = 0.

The density function of Z = (Y −µ) is

π(z;α) =
α exp

[
z − exp(z)

] [
− log

{
1− exp

[
− exp(z)

]}]−α−1

{
1− exp

[
− exp(z)

]}{
1 +

[
− log

{
1− exp

[
− exp(z)

]}]−α
}2 , z ∈ R .(6.3)

Based on the LLE density, we propose the location-scale linear regression

(6.4) yi = v>i β + zi , i = 1, ..., n ,

where the random error zi has density function (6.3), v>i = (vi1, ..., vip) is the vector of explana-
tory variables, β = (β1, ..., βp)> and α are unknown parameters. The parameter µi = v>i β

is the location of yi. The location parameter vector µ = (µ1, ..., µn)> is represented by
a linear model µ = Vβ, where V= (v1, ...,vn)> is a known model matrix. Equation (6.4)
is referred to as the LLE regression for censored data and opens new possibilities for fitting
several types of data. It is an extension of the log-exponential regression for censored data.

Consider a sample (y1,v1), ..., (yn,vn) of n independent observations, where each ran-
dom response is defined by yi = min

{
log(Xi), log(Di)

}
assuming that the observed lifetimes

and censoring times are independent. Let F and D be the sets of individuals for which yi is
the log-lifetime or log-censoring, respectively.

The log-likelihood function for the vector of parameters θ =
(
α, β>

)> from regression
(6.4) is

l(θ) = r log(α) +
∑
i∈F

zi −
∑
i∈F

exp(zi) − (α+1)
∑
i∈F

log
[
− log

{
1− exp

[
− exp(zi)

]}]
−
∑
i∈F

log
{

1− exp
[
− exp(zi)

]}
− 2

∑
i∈F

log

{
1 +

[
− log

{
1− exp

[
− exp(zi)

]}]−α
}

−
∑
i∈D

log

{
1 +

[
− log

{
1− exp

[
− exp(zi)

]}]−α
}

,(6.5)
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where zi = (yi−v>i β), and r is the number of uncensored observations (failures). The MLE θ̂

of the vector of unknown parameters can be determined by maximizing the log-likelihood (6.5)
using the subroutine NLMixed in SAS.

The NLMixed procedure of SAS has been exhaustively used to estimate the parameters
for several distributions. Further, Molenberghs et al. [13] adopted this procedure to obtain
the estimates in generalized linear models for repeated measures with normal and conjugate
random effects, whereas Vangeneugden et al. [20] used it to calculate the estimates of extended
random-effects models for repeated and overdispersed counts.

The estimated survival function for yi (ẑi = yi − v>i β̂) is

S(yi; α̂, β̂) =
1

1 +
[
− log

{
1− exp

[
− exp

(
yi−v>i β̂

)]}]−bα .(6.6)

We can adopt likelihood ratio (LR) statistics in the usual way for comparing some
special models with the LLE regression.

7. EMPIRICAL ILLUSTRATIONS WITH LIFETIME DATA

We now prove empirically that the LE distribution is a good alternative to the gamma,
log-normal, Weibull, EE, Nadarajah–Haghighi (NH) introduced by Nadarajah and Haghighi
[16], power Lindley (PL) defined by Ghitney et al. [6], exponentiated Lindley (EL) studied
by Nadarajah et al. [15], Birnbaum–Saunders (BS) and inverse Gaussian (IG) distributions.
For model comparison, we adopt the Anderson–Darling (A∗), Cramér–von Mises (W∗) and
Kolmogorov–Smirnov (K-S) measures. The cdfs of the EE, NH, PL, EL, BS and pdf of the
IG distributions (for x > 0) are, respectively,

FEE(x;α, λ) =
(
1− e−λx

)α , α, λ > 0 ,

FNH(x;α, λ) = 1− e1−(1+λx)α
, α, λ > 0 ,

FPL(x;β, θ) = 1−
(

1 + θ + θ xβ

1 + θ

)
e−θxβ

, β, θ > 0 ,

FEL(x;α, θ) =

[
1−

(
1 + θ + θ x

1 + θ

)
e−θx

]α

, α, θ > 0 ,

FBS(x;α, β) = Φ

 1
α

{(
x

β

)1/2

−
(

β

x

)1/2
} , α, β > 0 ,

F IG(x;µ, λ) =

√
λ

2π x3
exp
[
−λ(x−µ)2/(2 xµ2)

]
, µ, λ > 0 .

7.1. Application 1: Failure of electrical appliances in life test

The data set taken from Lawless [11] represents the 1000 cycles to failure for a group
of 60 electrical appliances in a life test. These data were also analyzed by Chesneau et al. [3]
and Mazucheli et al. [12]. Some descriptive statistics for these data are: n = 60, x̄ = 2.19297,
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s = 1.920062, skewness =1.2614 and kurtosis = 2.23207. The histogram displayed in Figure 5(a)
and the skewness indicates that the distribution is right-skewed. The TTT plot (Aarset [1])
is given in Figure 5(b). It is first convex and then concave, which suggests a bathtub failure
rate. So, the LE distribution could in principle be appropriate for modeling the current data.

x

D
en

si
ty

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

(a) (b)

Figure 5: (a) Histogram. (b) TTT plot for failure data.

Table 2: Estimated quantities and goodness-of-fit measures for failure data.

Distribution Estimates A∗ W∗ K-S K-S p-value

LE(α, λ)
1.9798 0.2625 0.3258 0.0374 0.0547 0.9491

(0.2555) (0.0357)

Gamma(α, θ)
0.9307 2.3562 0.7184 0.1042 0.0897 0.6860

(0.1486) (0.4909)

Weibull(c, λ)
1.0008 0.4555 0.7154 0.1036 0.0777 0.8342

(0.1066) (0.0814)

Log-normal(µ, σ)
0.1597 1.4392 2.5241 0.4291 0.1653 0.0666

(0.1858) (0.1313)

NH(α, λ)
1.6133 0.2274 0.4574 0.0615 0.0914 0.6632

(0.8016) (0.1575)

EE(α, λ)
0.9159 0.4311 0.7103 0.1028 0.0921 0.6543

(0.1502) (0.0735)

PL(β, θ)
0.8883 0.8042 0.6467 0.0766 0.0766 0.8155

(0.0891) (0.1031)

EL(α, θ)
0.7522 0.6203 0.4615 0.0644 0.0698 0.8522

(0.1274) (0.0873)

IG(µ, λ)
2.1929 0.3113 4.6132 0.8576 0.30548 0.0000

(0.7513) (0.1104)

BS(α, β)
1.9391 0.6483 2.4479 0.4343 0.3719 0.0000

(0.1824) (0.1111)
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Table 2 provides the MLEs of the parameters and the values of A∗, W∗ and K-S statistics
and associated p-value for each fitted model. We can conclude that the LE distribution
provides the best fit and has the ability to fit right-skewed data with BT failure rate. We also
provide QQ-plots for all fitted models in Figure 6. Clearly, the new model provides the closest
fit to the data.
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Figure 6: QQ-plots for failure data.

7.2. Application 2: Lung cancer patients data

This data is also taken from a study reported by Lawless [11]. These data represents
21 advanced lung cancer patients who were randomly assigned the chemotherapy treatments
termed as standard. Survival times t, measured from the start of treatment for each patient.
The main objective was to compare the effects of two chemotherapy treatments in prolonging
survival time. The basic statistics for these data are: n = 21, x̄ = 101.7619, s = 110.8147,
skewness =1.29047 and kurtosis = 1.00438. The histogram displayed in Figure 7(a) and the
skewness indicate that the distribution is right-skewed. The TTT plot of these data shown
in Figure 7(b) indicates a decreasing failure rate.

The measures reported in Table 3 indicate that the LE model provides the most accurate
fit to the data. Further, the QQ-plots for all fitted models in Figure 8 also suggest the same
conclusion.
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Figure 7: (a) Histogram. (b) TTT plot for cancer data.

Table 3: Estimated quantities and goodness-of-fit measures for cancer data.

Distribution Estimates A∗ W∗ K-S K-S p-value

LE(α, λ)
0.8417 0.0108 0.5871 0.0872 0.1574 0.8755

(0.1641) (0.0028)

Gamma(α, θ)
1.2889 57.7242 0.6114 0.0912 0.1970 0.3887

(0.2607) (10.7798)

Weibull(c, λ)
0.8757 0.0185 0.6120 0.0922 0.1616 0.4425

(0.1462) (0.0142)

Log-normal(µ, σ)
3.9144 1.2982 0.7087 0.1130 0.1503 0.2299

(0.2832) (0.2003)

NH(α, λ)
0.6437 0.0217 0.6364 0.0975 0.15307 0.2088

(0.2855) (0.0192)

EE(α, λ)
0.8301 0.0087 0.6056 0.0905 0.1701 0.3776

(0.2288) (0.0025)

PL(β, θ)
0.6293 0.1195 0.6343 0.0965 0.1595 0.5590

(0.1253) (0.0023)

EL(α, θ)
0.4820 0.0274 0.6309 0.0928 0.3064 0.0386

(0.1274) (0.0873)

IG(µ, λ)
101.0077 32.1416 0.6999 0.1152 0.4718 0.0150
(38.6442) (9.9192)

BS(α, β)
1239.8960 1880.1910 1.0941 0.1844 0.5005 0.0000
(503.2201) (642.4328)
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Figure 8: QQ-plots for cancer data.

7.3. Application 3: Entomology data

In this application, we take a data set from a study carried out at the Department of
Entomology of the Luiz de Queiroz School of Agriculture, University of São Paulo. Such study
aims to assess the longevity of the Mediterranean fruit fly (ceratitis capitata), which is consid-
ered a pest in agriculture. Instead of using an insecticide, Silva et al. [18] conducted a study
using small portions of food containing substances extracted from a tree called Azadirachta
indica which is best known internationally by the name “neem”. The experiment was com-
pletely randomized with 11 treatments, consisting of different extracts of the neem tree at
concentrations of 39, 225, and 888 ppm, where the response variable is the lifetime of the
adult flies in days after exposure to the treatments. From the results of the experiment, these
11 treatments are allocated into two groups, namely:

Group 1: Control 1 (deionized water); Control 2 (acetone −5%); aqueous extract of
seeds (AES) (39 ppm); AES (225 ppm); AES (888 ppm); methanol extract
of leaves (MEL) (225 ppm); MEL (888 ppm); and dichloromethane extract
of branches (DMB) (39 ppm) 425.

Group 2: MEL (39 ppm); DMB (225 ppm); and DMB (888 ppm).
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Lanjoni et al. [10] analyzed these data by fitting the log-Burr XII geometric type I
(LBXIIGI) and log-Burr XII geometric type II (LBXIIGII) models. Recently, these data were
also analyzed by Cordeiro et al. [5] and Zubair et al. [21] using the generalized Weibull-logistic
regression and log-power-Cauchy negative-binomial regressions, respectively. Following the
same procedure from these surveys, we compare the proposed model with these regressions
in this application.

The response variable in the experiment is the lifetime of the adult lies in days after
exposure to the treatments. The total sample size is n = 72. So, the variables used in this
study are:

• yi : log-lifetime of ceratitis capitata adults in days;

• δi : censoring indicator;

• vi1 : sex of the larvae;

• vi2 : group (0 = group 1, 1 = group 2), i = 1, ..., 74.

Lanjoni et al. [10] introduced two lifetime distributions by compounding the Burr XII
and geometric distributions, and also defined two extended regressions based on the loga-
rithms of these distributions. Let F and D be the sets of individuals for which yi is the
log-lifetime or log-censoring, respectively. We adopt the classical log-Weibull (LW) regression
as an example to illustrate that the LE regression can provides better fits. In this case, the
total log-likelihood function for the parameters θ =

(
σ,β>

)> is

l(θ) = r∗ log
(

1
σ

)
+
∑
i∈F

zi −
∑
i∈F

exp(zi) −
∑
i∈D

exp(zi) ,

where zi =
(
yi − v>i β

)/
σ .

Next, we present results by fitting the regression (for i = 1, ..., 172)

yi = β0 + β1vi1 + β2 v21 + σ zi ,

where yi can follow the LLE, LBXIIGII and LBXIIGI distributions. For some fitted regres-
sions, Table 4 lists the MLEs (and the corresponding standard errors in parentheses) of the
parameters and the values of the following statistics: Akaike information criterion (AIC),
Bayesian Information Criterion (BIC) and Consistent Akaike Information Criterion (CAIC).
The computations are performed using the NLMixed subroutine in SAS. These results indicate
that the LLE regression model with censored data could be chosen as the best regression. So,
this regression is really competitive to the log-Weibull regression.

The MLEs of the parameters and their standard errors are listed in Table 4. Note that
the covariate (v2) is significant at the 1% level, whereas the other covariate is not significant
at the usual significance level.



652 M. Mansoor, M.H. Tahir, G.M. Cordeiro, E.M.M. Ortega and A. Alzaatreh

Table 4: Estimated quantities, p-values in [ · ] and goodness-of-fit measures
from some regressions fitted to entomology data.

Regression α β0 β1 β2 AIC CAIC BIC

3.9444 3.8567 0.0581 −0.3474 334.5 334.7 347.1
LLE (0.2774) (0.0607) (0.0791) (0.0882)

[<0.0001] [0.4636] [<0.0001]

3.1724 0.1369 −0.4430 423.3 423.5 432.8
LE (0.1198) (0.1569) (0.1766)

[<0.0001] [0.3843] [0.0130]

σ β0 β1 β2

0.5151 3.2435 0.1358 −0.4158 344.3 344.6 356.9
LW (0.03256) (0.06309) (0.08111) (0.09124)

[<0.0001] [0.0960] [<0.0001]

σ k p β0 β1 β2

0.4877 9.3993 1E-8 4.3085 0.1104 −0.4014 348.1 348.6 367.0
LBXIIGI (0.0596) (8.5578) (1E-9) (1.1316) (0.0962) (0.0978)

[0.0002] [0.2525] [<0.0001]

0.9107 6.0541 0.9798 3.1649 0.0354 −0.3252 335.7 336.2 354.6
LBXIIGII (0.3379) (4.8403) (0.0247) (0.8847) (0.0803) (0.0876)

[0.0005] [0.6605] [0.0003]

0.4877 9.4002 0 4.3085 0.1104 −0.4014 346.1 346.4 361.8
LBXII (0.0597) (8.6141) (1.1349) (0.0963) (0.0978)

[0.0002] [0.2528] [<0.001]

Finally, we turn to a simplified model retaining only v2 as an explanatory variable

yi = β0 + β2 vi2 + σ zi .

The MLEs for the LLE regression model fitted to the data are given in Table 5. In order
to assess if the model is appropriate, Figure 9(a) displays the plots of the empirical survival
function and the estimated survival function from the fitted LLE regression. The plots of
its hrfs in Figure 9(b) reveal decreasing shapes. There is a significant difference between the
levels of the covariable v2. In fact, this regression provides a good fit to these data.

Table 5: MLEs of the parameters from the fitted LLE regression model
to the entomology data.

Model α β0 β2

3.9489 3.8845 −0.3486
LLE (0.2777) (0.0475) (0.0878)

[<0.001] [0.0001]
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Figure 9: Entomology data: (a) Estimated LLE survival function and empirical survival.
(b) Estimated hrf.

8. CONCLUDING REMARKS

The Weibull, gamma and exponentiated-exponential distributions have two parameters
and they are used quite often in survival analysis. These distributions can have increasing or
unimodalprobabilitydensity functions, andmonotonehazard functions. However, noneof which
can have non-monotone hazard rate function shape. In many practical situations, one might
observe non-monotone hazard rate functions, and clearly in those cases, none of these distri-
bution functions can be used. The proposed LE distribution can have decreasing or unimodal
density function shapes. It is also interesting to note that the hazard rate function possesses
three different shapes: decreasing failure rate, bathtub and decreasing-increasing-decreasing.

Moreover, the LE distribution has only two parameters which makes estimating the
parameters not very difficult. It may be mentioned that not too many two-parameter distri-
butions can have non-monotone hazard function shape. Therefore, the proposed distribution
will be quite useful. Furthermore, its survival and hazard rate functions have closed-form
representations. Accordingly, this model can readily be utilized to analyze censored data
sets. We also propose a new regression model that can be useful to model real data sets.
The importance of the new models is proved empirically by means of three real data sets.
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1. INTRODUCTION

Collecting and publishing public data (e.g., tax data) relevant to national interests,
or to human race in a broader sense, thereby establishing transparency in government poli-
cies and aiding socio-economic development have been primary objectives of many statistical
organizations. However, they are also responsible for protecting survey respondents’ confiden-
tiality since that leads to greater rates and accuracy in responses. The aforementioned issues
have collectively led to the origin of synthetic data where sensitive values are treated like
missing values and are imputed based on the underlying data distribution. Mere elimination
of the key identifiers, e.g., name, address, unique government identification number, age, etc.
may not be sufficient to provide full protection to respondent’s identity, and hence, additional
steps should be taken to this end. Synthetic data are generated in a way that the privacy and
confidentiality of general public are not compromised, however, keeping underlying structure
of the stochastic model that generated the data, intact. The inferences drawn from synthetic
data are expected to reveal similar characteristics as the ones obtained actual data, hence,
any decisions or actions based on synthetic data remain valid. Some well known techniques
in this front involve cell suppression (method of withholding values of the primary risky cells
and secondary nearly-risky cells by some random mechanism; [9], [7]), data swapping (a per-
turbation method of creating pairs with similar attributes and interchanging sensitive values
between them; [5]), top coding/bottom coding (replacing confidential values of an attribute
with the maximum or minimum or some other threshold values), random noise perturbation
(method of contaminating data with random noises following some known distribution and
applying statistical methods to estimate the true values ignoring the noises; [10], [11], [12])
and multiple imputation (replacing sensitive values with some aggregated measure obtained
from multiple imputed values by utilizing the underlying stochastic nature of the data; [31],
[35]) have been implemented widely for statistical disclosure control.

In this context, application of noise perturbed data and synthetic data have gained
recognition only in the recent years. Under these techniques, random errors or noises are
generated from a well known probability distribution and applied on quantitative data that
need to be masked, either additively or multiplicatively. Many inherent characteristics and
principal features of noise-perturbed data obtained from the actual microdata in order to
protect privacy were studied by [10], [11], [12], [19], [22], [33], to name a few. Recently, [14]
in their paper, developed a likelihood based inferential method under the assumption of
multiplicative noise where data is obtained from a parametric model.

One of the early works to implement synthetic data for statistical disclosure control was
accomplished by [30] where synthetic data is generated with a concept similar to multiple
imputation [31]. Multiple imputation provides a framework in which each datum is replaced
by a vector of m values sampled from a known probability distribution. In [30], the author
suggested that multiple-imputation technique results in synthetic data that do not resemble
any actual sampling unit while preserving inherent properties of the underlying distribution
and confidentiality of the respondents. Detailed parametric and non-parametric inferential
methods of analyses based on synthetic data were examined by [25].

An illustration on multiply imputed fully synthetic public use microdata with respect to
inferences on various descriptive and analytic estimands, and degree of protection of confiden-
tiality, was carried out by [27]. Modified adaptations on multiple imputation based framework
in context of missing data, data confidentiality and measurement error was discussed in [29].
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A likelihood-based finite sample inference was studied by [15] for a synthetic data obtained
from an exponential distribution. Similar studies were carried out by [16] and [17] where syn-
thetic data are generated from a normal distribution using posterior predictive sampling and
plug-in sampling methods. Further discussions and developments in synthetic data method-
ology could be found in [28], [26] and [13].

Following the line of work similar to [15], in this paper we develop a likelihood-based in-
ferential procedure for synthetic data using plug-in sampling and posterior predictive sampling
where the true population is a two-parameter Pareto distribution. Define x = (x1, ..., xn)> as
the original microdata with a probability density function (pdf) given by fθ(x) where θ is the
parameter characterizing the underlying population. To illustrate the mechanism of plug-in
sampling, let θ̂ = θ̂(x) be a point estimate of θ. Then, for a positive integerm, a synthetic data
is given by Y = (y1, ..., ym) where yi = (yi1, ..., yin)>; i= 1, ...,m is a random sample generated
from fθ̂(·). On the other hand, posterior predictive sampling method assumes an appropriate
prior distribution π(θ) of θ. θ∗ is chosen randomly from the posterior distribution π(θ|x) of θ
given x. A synthetic data is given by Y = (y1, ..., ym) where yi = (yi1, ..., yin)>; i= 1, ...,m is
a random sample generated from fθ∗i (·) where θ∗i is the value of θ obtained by sampling from
π(θ|x) at i-th draw.

As discussed by [28], [26] and [13], for multiple imputed data sets, one may develop
inference based on a scalar parameter Q = Q(θ). Let η = η(x) and ν = ν(x) be point esti-
mator of Q(θ) and estimator of variance of η, respectively. An estimator of Q obtained from
the synthetic data Y is given by

(1.1) η̄m =
1
m

m∑
i=1

ηi

and an estimator of variance of η̄m is given by

(1.2) Vm =
1

m(m−1)

m∑
i=1

(ηi− η̄m)2 +
1
m

m∑
i=1

νi ,

where ηi = η(yi) and νi = ν(yi) for i = 1, ...,m. For the upper γ/2-th quantile tγ/2;ν for a
t-distribution with degrees of freedom

ν = (m−1)
[
1 +

(m−1)
∑m

i=1 νi∑m
i=1(ηi− η̄m)2

]2

,

an approximate interval estimate of Q(θ) can be evaluated using
(
η̄m ± tγ/2;ν

√
Vm
)
.

Income data are often published by the statistical agencies as aggregates to ensure
confidentiality at the cost of huge information loss. In order to circumvent this problem,
these agencies use microdata in form of individual income data published synthetically. Again,
Internal Revenue Service (IRS) releases tax return records of chosen individuals by masking
their key identifiers because these are important source of information for policy makers,
academicians or non-profit research organizations to analyze the influences of variation of tax
policies on revenues or burden of tax on different social strata [3]. It is widely known that
individual income can be well-modeled by Pareto distribution ([8]; [21]; [20]; [1]). The pdf of
a random variable X following a Pareto distribution is given by

(1.3) fθ(x) =
ψCψ

xψ+1
,
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where x > C, C is a scale parameter that denotes minimum threshold value for x, ψ > 0 is a
shape parameter, and θ = (C,ψ)>. In economics, ψ is known as the Pareto index [34] which
is a measure related to breadth of the income distribution.

Though synthetic or imputed data are widely used to mask income related information
of individuals [6], inferential procedures for a synthetic data generated from a Pareto model
have not been studied yet, to the best of our knowledge. Therefore, in this paper, we study
and develop inferential methods based on likelihood function for a model-based singly imputed
synthetic data using plug-in and posterior predictive sampling methods when the original data
is obtained from a Pareto distribution. The formulation and derivations of the inferential
methodologies are mathematically more intensive, complex and challenging in comparison
to the exponential [15] or normal [17] distributions, owing to the dependency between the
scale parameter C and the Pareto random variable. In particular, for posterior predictive
sampling, expressions for the estimators are either implicit or their derivations are intractable.
However, the estimators that could be derived are sufficient for the concerned parameter and
mostly exact in nature, except few which are build based on asymptotic normality of the ML
estimators. Moreover, as argued by [16], developing inferential methods based on synthetic
data requires generation of m random samples of size n with m> 1. However, situations
arise when m may not be greater than one due to stricter privacy policies or to avoid high
disclosure risks [15], and only a single synthetic version of the original data is available for
study. Thus, a major motivation of this work is to establish valid inferential results based on
a single synthetic data by properly utilizing the underlying model structure.

The rest of the paper is arranged as follows. In Section 2, discussion on methodology to
estimate the parameters is provided. Section 3 deals with a simulation study which is carried
out to validate the performance of our proposed method of estimation. Interpretation of the
results of the simulation study are also discussed. Finally, concluding remarks are made in
Section 4.

2. METHODOLOGY FOR DRAWING LIKELIHOOD BASED INFERENCE

Let X = (X1, ..., Xn)> represent the original data of size n where X1, ..., Xn are inde-
pendent and identically distributed (iid) according to Pareto distribution with a pdf given
in (1.3). The maximum likelihood (ML) estimators of C and ψ are, respectively, given by

Ĉ = X(1) = min{X1, ..., Xn} and ψ̂ = n
[∑n

i=1 log
(
Xi
X(1)

)]−1
. Note that the sampling distribu-

tion of Ĉ is Pareto with scale parameter C and shape parameter nψ. On the other hand,
ψ̂ follows Inverse-Gamma (IG) distribution with parameters n and nψ when C is known,
and IG distribution with parameters n − 1 and nψ when C is unknown [32].
Moreover, Ĉ and ψ̂ are stochastically independent ([20]; [32]). Furthermore, Ĉ =X(1) is

sufficient for C when ψ is known,
(∏n

i=1Xi

)1/n
= Ce1/ψ̂ is sufficient for ψ when C is known,

and θ̂ =
(
X(1),

∑n
i=1 log

(
Xi
X(1)

))>
=
(
Ĉ, n/ψ̂

)> is jointly sufficient for θ = (C,ψ)> when both

C and ψ are unknown ([20]). Finally, Ĉ and ψ̂ are both individually complete whereas
(Ĉ, ψ̂)> is jointly complete [32]. With this background, the following results are developed
for synthetic data based on plug-in sampling.
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2.1. Plug-in sampling

Let Y = (Y1, Y2, ..., YN )> be a synthetic data of size N obtained by generating a ran-
dom sample from a Pareto distribution with parameters Ĉ and ψ̂. For m multiply imputed
synthetic data sets, N is generally taken as nm. However, our interest lies in the case where
m = 1 to incorporate stricter confidentiality as mentioned earlier. Hence, assuming the value
of n known, N is considered to be equal to n. Once the synthetic data Y = (Y1, Y2, ..., Yn)>

is obtained, our objective is to provide inference on θ = (C,ψ)> based on Y . In the following
subsections, we describe methodologies to draw inference on θ under three scenarios, viz.,
inference on C when ψ is known, inference on ψ when C is known, and inference on θ when
both C and ψ are unknown.

2.1.1. Inference on ψ when C is known

Under this scenario, Y is generated from Pareto distribution with the value of C known.
Let us define A = C−n

∏n
i=1Yi.

Theorem 2.1. For i=1, ...,n, yi>C > 0, ψ > 0 and C known, the pdf of Y is given by

(2.1) gψ(y) =
2 (ψ n)n

ACn Γ(n)
BesselK

(
0, 2

√
nψ logA

)
,

where BesselK(·, ·) is the modified-Bessel function of second kind defined as

(2.2) BesselK(n, z) =
√

π

2 z
e−z(
n− 1

2

)
!

∫ ∞

0
e−t tn−1/2

(
1− t

2 z

)n−1/2

dt ,

for n ∈ R and z ∈ C.

Proof: For yi>C > 0, i=1, ...,n, ψ> 0 and knownC, the conditional pdf of Y given ψ̂
is given by

g1(y|ψ̂) = ψ̂nCnψ̂
(∏

yi

)−ψ̂−1

and the conditional pdf of ψ̂ given ψ is given by

g2(ψ̂|ψ) =
ψn nn

Γ(n)
ψ̂−n−1 exp(−ψn/ψ̂) .

Thus,

gψ(y) = g1(y|ψ̂)× g2(ψ̂|ψ)

=
ψn nn

Γ(n)

∫ ∞

0
Cnψ̂

(∏
yi

)−ψ̂−1
exp(−nψ/ψ̂) ψ̂−1 dψ̂

=
ψn nn

Γ(n)Cn

∫ ∞

0
ψ̂−1A−ψ̂−1 exp(−nψ/ψ̂) dψ̂ .
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Many well known distributions can be expressed in the form of Bessel function. This
special function, namely, modified Bessel function of second kind expressed in (2.2) can be
computed for specified values of its argument using Mathematica version 12.2 [36].

Uniformly minimum variance unbiased estimator and exact confidence interval for ψ

As discussed in ([20]), A is sufficient for ψ and complete. Let us define

(2.3) ψ̃ =
n∑n

i=1 log(Yi/C)
= n

[
log(A)

]−1
.

ψ̃ is also sufficient for ψ and complete. Hence,

E{ψ̃} = E
{
E{ψ̃|ψ̂}

}
= E

{
n ψ̂

n−1

}
=

n2

(n−1)2
ψ .(2.4)

An unbiased estimator of ψ is ψu = (n−1)2

n2 ψ̃. ψu is also a sufficient and complete statistic.
Further, Lehmann Scheffé theorem ([4, Chapter 6]), implies that ψu is the uniformly minimum
variance unbiased estimator (UMVUE) of ψ ([4, Chapter 7]). The variance of ψu is given by

V (ψu) = V
(
E{ψu|ψ̂}

)
+ E

{
V (ψu|ψ̂)

}
=
(
n−1
n

)4 [
V
(
E{ψ̃|ψ̂}

)
+ E

{
V (ψ̃|ψ̂)

}]
=
(
n−1
n

)4 [
V

(
n ψ̂

n−1

)
+ E

{
n2 ψ̂2

(n−1)2 (n−2)

}]

=
{

2n− 3
(n−2)2

}
ψ2 .(2.5)

An estimate V̂ (ψu) of V (ψu) is obtained using (2.5) by replacing ψ with ψ̃.

To find an exact CI for ψ, we construct a pivotal quantity based on the sufficient
statistic ψ̃. Recall that ψ̃ follows IG distribution with parameters (n, nψ̂) when C is known.
Then the conditional pdf of ψ̃ is

(2.6) g2(ψ̃|ψ̂) =
ψ̂nnn

Γ(n)
ψ̃−n−1 exp

(
− ψ̂ n
ψ̃

)
.

Again, the conditional pdf of ψ̂ given ψ is given by

(2.7) g2(ψ̂|ψ) =
ψnnn

Γ(n)
ψ̂−n−1 exp

(
−ψn
ψ̂

)
.

Combining (2.6) and (2.7), we obtain

(2.8) hψ(ψ̃) =
ψnn2n[
Γ(n)

]2 ∫ ∞

0
ψ̂−1 ψ̃−n−1 exp

(
−n
[
ψ

ψ̂
+
ψ̂

ψ̃

])
dψ̂ .
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Taking substitution ψa = ψ̂
ψ , (2.8) can be written as

(2.9) hψ(ψ̃) =
ψnn2n[
Γ(n)

]2 ψ̃−n−1

∫ ∞

0
ψ−1

a exp

(
−n
[

1
ψa

+
ψ ψa

ψ̃

])
dψa .

Further, considering a transformation of variable ψ̃ →W where W = ψ̃
ψ we obtain

(2.10) h(w) =
n2n[

Γ(n)
]2 w−n−1

∫ ∞

0
ψ−1

a exp

(
−n
[

1
ψa

+
ψa

w

])
dψa ,

which is independent of ψ. Hence, W = ψ̃
ψ = n(logA)−1

ψ is a pivot for ψ. For a given level of
significance γ ∈ (0, 1), we may obtain κ2 > κ1 > 0 such that

(2.11)
∫ κ2

κ1

h(w) dw = 1− γ .

Therefore, an exact (1− γ) 100% CI for ψ is given by

(2.12)
(
n(logA)−1

κ2
,
n(logA)−1

κ1

)
.

κ1 and κ2 are chosen such that the CI in (2.12) has the shortest length. For achieving that,
we define the length of the CI in (2.12) as

Lψ = n(logA)−1

[
1
κ1

− 1
κ2

]
= ψ̃

[
1
κ1

− 1
κ2

]
.

The objective is to find κ1 and κ2 such that the expected value of Lψ is minimum subject
to (2.11). Applying Lagrangian multiplier technique, the Lagrangian function Lψ(κ1, κ2, λ)
is obtained as

(2.13) Lψ(κ1, κ2, λ) =
[

1
κ1

− 1
κ2

]
+ λ
(
HW (κ2)−HW (κ1)− (1− γ)

)
,

where λ is the Lagrangian multiplier and HW (w) =
∫ w
0 h(u) du. On taking partial derivatives

of Lψ(κ1, κ2, λ) in (2.13) with respect to κ1, κ2 and λ we solve (2.14) for κ1 and κ2 where

κ2
1 h(κ1)− κ2

2 h(κ2) = 0 ,

HW (κ2)−HW (κ1)− (1− γ) = 0 .(2.14)

Maximum likelihood estimator and asymptotic confidence interval for ψ

The ML estimator of ψ is obtained as usual by taking the partial derivative of the (2.1)
and equating to zero. That is, solving

(2.15) ψ − n

logA

(
BesselK

[
0, 2

√
nψ logA

]
BesselK

[
1, 2

√
nψ logA

])2

= 0

for ψ, the ML estimator ψ̃syn of ψ can be obtained. It is well known that under certain
regularity conditions ψ̃syn follows an asymptotic normal distribution ([18, Chapter 6.3]) with
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mean ψ and variance σ2(ψ̃syn) = I(ψ)−1 where I(ψ) =−E
[{

∂2 log gψ(y)

∂ψ2

}]
is the information

at the true value of ψ. Since σ2(ψ̃syn) depends on unknown ψ, an estimate of σ2(ψ̃syn)

is given by σ̂2(ψ̃syn) = −
{
∂2 log gψ(y)

∂ψ2

}∣∣∣
ψ=ψ̃syn

([23, Chapter 35]). Therefore, an asymptotic

100 (1− γ)% CI for ψ is given by
(
ψ̃syn ± zγ/2 σ̂

2(ψ̃syn)
)
.

2.1.2. Inference on C when ψ is known

Under this scenario, a synthetic data y is generated from Pareto distribution with the
scale parameter Ĉ =X(1) and the shape parameter as ψ. The goal is to derive inference on C
based on y. Central to this goal is the joint pdf gC(y) which can be used to obtain the
likelihood function L(C |y). Let us define C̃ = Y(1) = min{Y1, ..., Yn} and B =

∏n
i=1 yi.

Theorem 2.2. The joint pdf of Y is given by

(2.16) gC(y) =
nψn+1Cnψ

Bψ+1
× log

(
C̃

C

)
,

where yi > C > 0 for i= 1, ..., n, C̃ > C and ψ > 0.

Proof: Note that C̃ > Ĉ > C. Let g3(y|Ĉ) and g4(Ĉ |C) be the conditional pdfs of y
given Ĉ and Ĉ given C, respectively. Also, g4(Ĉ |C) is Pareto with parameters C and nψ.
For C̃ > C, the joint pdf of Y is expressed as

gC(y) =
∫ C̃

C
g3(y|Ĉ) g4(Ĉ |C) dĈ

=
∫ C̃

C

ψn Ĉnψ(∏
yi
)ψ+1

× nψ Cnψ

Ĉnψ+1
dĈ

=
nψn+1Cnψ(∏

yi
)ψ+1

∫ C̃

C

dĈ

Ĉ

=
nψn+1Cnψ

Bψ+1
× log

(
C̃

C

)
.(2.17)

Uniformly minimum variance unbiased estimator and exact confidence interval for C

Since C̃ = Y(1) is a complete sufficient statistic for C when ψ is known, Cu = (nψ−1)2

(nψ)2
C̃

is an unbiased estimator of C as shown below.

E{C̃u} = E
{
E{C̃u|Ĉ}

}
=

(nψ −1)2

(nψ)2
E
{
E{C̃ |Ĉ}

}
=

(nψ −1)2

(nψ)2
E

{
nψ Ĉ

nψ −1

}
= C .(2.18)
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By Lehmann Scheffé theorem ([4, Chapter 6]), C̃u is the UMVUE of C when ψ is known.
The variance of C̃u is given by

V {C̃u} = V
{
E{C̃u|Ĉ}

}
+ E

{
V {C̃u|Ĉ}

}
=

(nψ −1)4

(nψ)4
×
[
V
{
E{C̃ |Ĉ}

}
+ E

{
V {C̃ |Ĉ}

}]
=

(nψ −1)4

(nψ)4
×

[
V

{
nψ Ĉ

nψ −1

}
+ E

{
nψ Ĉ2

(nψ −1)2 (nψ − 2)

}]

=
{

2− 1
(nψ −1)2

}
C2

(nψ)2
.(2.19)

The development of an exact confidence interval for C involves construction of a pivot
for C from its sufficient statistic C̃ = Y(1). For C̃ > C, the pdf of C̃ is given by

hC(C̃) =
∫ C̃

C
g4(C̃ |Ĉ) g4(Ĉ |C) dĈ

=
∫ C̃

C

nψ Ĉnψ

C̃nψ+1
× nψ Cnψ

Ĉnψ+1
dĈ

=
n2 ψ2Cnψ

C̃nψ+1
× log

(
C̃

C

)
.(2.20)

Let T = log
(
C̃
C

)
, then the pdf of T as

h̃(t) = n2 ψ2 t e−nψt, for t > 0

and h̃(t) is independent of C. For some κ2 > κ1 ≥ 1 and γ ∈ (0, 1), we obtain∫ κ2

κ1

h̃(t) dt = 1− γ .

Therefore, an exact 100 (1− γ)% CI for C is given by
(
C̃e−κ2 , C̃e−κ1

)
. Define H̃C(c) =∫ c

0 h̃(u) du. Following the steps as discussed in Section 2.1.1, the shortest length 100(1−γ)%
for C is obtained by solving

eκ1 h̃(κ1)− eκ2 h̃(κ2) = 0 ,

H̃C(κ2)− H̃C(κ1)− (1− γ) = 0 ,(2.21)

for κ1 and κ2.

Maximum likelihood estimation of C

The usual method of derivative based ML estimation cannot be applied here to obtain
the ML estimate of C. However, noting

∂L(C |y)
∂C

=
∂gC(y)
∂C

= −nψ
n+1C−(n+1)

Aψ+1

{
1 + log

(
C̃

C

)}
< 0 ,
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i.e., L(C |y) is decreasing in C with 0<C < C̃, the ML estimator of C is obtained as C̃ = Y(1).
The exact distribution of C̃ is given by Equation (2.20). An estimate of the variance of C̃
can be derived from (2.19) as

V̂ (C̃) =

[
(nψ)2

(nψ − 1)4

{
2− 1

(nψ − 1)2

}]
C̃2 .

2.1.3. Inference on θ = (C,ψ)> when both C and ψ are unknown

To develop inference on θ, the joint pdf of y given θ in Theorem 2.3, where y =
(y1, ..., yn)> is a synthetic data obtained from Pareto distribution with parameters Ĉ and ψ̂.
Define ψ∗ = nPn

i=1 log(Yi/Y(1))
. ψ∗ follows IG with parameters n−1 and nψ̂.

Theorem 2.3. The joint pdf of Y is given by

(2.22) gθ(y) =
(nψ)nCnψ

Γ(n−1)

∫ ∞

0

(
C̃n(ψ̂−ψ) − Cn(ψ̂−ψ)

n(ψ̂ − ψ)

)
exp
{
−nψ

ψ̂

}
(∏n

i=1 yi
)ψ̂+1

dψ̂ ,

where C̃ = min{y1, ..., yn} > C > 0 and ψ > 0.

Proof: The conditional pdf of y given θ̂ = (Ĉ, ψ̂)> is expressed as

(2.23) g5(y|θ̂) =
ψ̂n Ĉnψ̂(∏n
i=1 yi

)ψ̂+1
,

where yi > Ĉ > C > 0 for i= 1, ..., n and ψ̂ > 0. Again, the conditional pdf of θ̂ given θ is

(2.24) g6(θ̂|θ) =
(nψ)nCnψ exp

{
−nψ

ψ̂

}
Ĉnψ+1 ψ̂n Γ(n−1)

,

for 0< C < Ĉ < C̃, ψ̂ > 0 and ψ > 0. Equation (2.24) is obtained using the fact that Ĉ and ψ̂
are stochastically independent where Ĉ follows Pareto distribution with scale C and shape nψ,
and ψ̂ follows IG distribution with parameters n−1 and nψ. Finally, the pdf of y is given by

gθ(y) =
∫ ∞

0

∫ C̃

C
g5(y|θ̂)× g6(θ̂|θ) dĈ dψ̂

=
(nψ)nCnψ

Γ(n−1)

∫ C̃

C

(
Ĉn(ψ̂−ψ)−1

)∫ ∞

0

exp
{
−nψ

ψ̂

}
(∏n

i=1 yi
)ψ̂+1

dψ̂ dĈ ,(2.25)

which can be further simplified to

gθ(y) =
(nψ)nCnψ

Γ(n−1)

∫ ∞

0

(
C̃n(ψ̂−ψ) − Cn(ψ̂−ψ)

n(ψ̂ − ψ)

)
exp
{
−nψ

ψ̂

}
(∏n

i=1 yi
)ψ̂+1

dψ̂ .(2.26)
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Construction of a pivot for θ

Let us define θ̃ = (C̃, ψ∗)>. The pdf of θ̃ is given by

hθ(θ̃) =
∫ ∞

0

∫ C̃

C
g6(θ̃|θ̂)× g6(θ̂|θ) dĈ dψ̂

=
∫ ∞

0

∫ C̃

C

(nψ̂)n Ĉnψ̂ exp
{
−nψ̂
ψ∗

}
C̃nψ̂+1 ψ∗n Γ(n−1)

×
(nψ)nCnψ exp

{
−nψ

ψ̂

}
Ĉnψ+1 ψ̂n Γ(n−1)

dĈ dψ̂

=
n2nCnψ ψn{

Γ(n−1)
}2
ψ∗n

∫ ∞

0

∫ C̃

C

Ĉn(ψ̂−ψ)−1

C̃nψ̂+1
exp

[
−n
{
ψ̂

ψ∗
+
ψ

ψ̂

}]
dĈ dψ̂ .(2.27)

Substituting t = ψ̂
ψ , we obtain

hθ(θ̃) =
n2nCnψ ψn{

Γ(n−1)
}2
ψ∗n

∫ ∞

0

∫ C̃

C

Ĉnψ(t−1)−1

C̃nψt+1
exp

[
−n
{
ψt

ψ∗
+

1
t

}]
dĈ × ψ dt

=
n2nCnψ ψn+1{
Γ(n−1)

}2
ψ∗n

∫ ∞

0

1
C̃nψt+1

exp

[
−n
{
ψt

ψ∗
+

1
t

}]
×
∫ C̃

C
Ĉnψ(t−1)−1dĈ dt

=
n2nCnψ ψn+1{
Γ(n−1)

}2
ψ∗n

∫ ∞

0

1
C̃nψt+1

exp

[
−n
{
ψt

ψ∗
+

1
t

}]
×

[
C̃nψ(t−1) − Cnψ(t−1)

nψ (t−1)

]
dt .(2.28)

Considering a bivariate transformation (C̃, ψ∗) → (U, V ) where

U =
(
C̃

C

)ψ
and V =

ψ∗

ψ
,(2.29)

we obtain pdf of (U, V ) which is independent of θ. The Jacobian of the transformation is
Cu

1
ψ
−1. From (2.28), the joint pdf of (U, V ) is

hU,V (u,v) =
n2n−1{

Γ(n−1)
}2
vn

∫ ∞

0
exp

[
−n
{
t

v
+

1
t

}]
×

[
un(t−1) −1
unt+1(t−1)

]
dt , u>1 and v > 0 ,

(2.30)

which is independent of θ. The marginal pdfs of U and V are obtained from (2.30) as follows:

hU (u) =
nn

Γ(n−1)

∫ ∞

0

{
un(t−1) −1

}
exp(−n/t)

unt+1 tn−1 (t−1)
dt , u > 1 ,(2.31)

and

hV (v) =
n2n−2{

Γ(n−1)
}2
vn

∫ ∞

0
t−1 exp

[
−n
{
t

v
+

1
t

}]
dt , v > 0 .(2.32)

The marginal cdfs U and V are, respectively, HU (u) =
∫ u
0 hU(a)da and HV (v) =

∫ v
0 hV (a)da.

Now, we proceed as follows.
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Estimation of ψ when C is unknown

The expected value of ψ∗ is derived as

E{ψ∗} = E
{
E{ψ∗|θ̂}

}
= E

{
nψ̂

n− 2

}
=

n2

(n− 2)2
ψ .(2.33)

Hence, an unbiased estimator ψ∗u of ψ is (n−2)2

n2 ψ∗. The variance of ψ∗u is

V (ψ∗u) = V
(
E{ψ∗u|ψ̂}

)
+ E

{
V (ψ∗u|ψ̂)

}
=

(2n− 5)
(n− 3)2

ψ2 .(2.34)

An estimate V̂ (ψ∗u) of V (ψu) is obtained by replacing ψ with ψ∗ in (2.34). Mimicking steps
in Section 2.1.1, a 100(1− γ)% CI for ψ has the following form:

(2.35)
(
ψ∗

κ2
,
ψ∗

κ1

)
,

where κ1 and κ2 are the roots of

κ2
1hV (κ1)− κ2

2 hV (κ2) = 0 ,

HV (κ2)−HV (κ1)− (1− γ) = 0 .(2.36)

Estimation of C when ψ is unknown

For C < C̃, we derive the marginal pdf of C̃ from (2.28) as

qθ(C̃) =
∫ ∞

0
hθ(θ̃) dψ∗

=
nnCnψ ψ

Γ(n−1)

∫ ∞

0

exp{−n/t}
(t−1)tn−1

×

[
C̃nψ(t−1) − Cnψ(t−1)

C̃nψt+1

]
dt .(2.37)

Note that U in (2.29) is not independent of ψ. Hence, in an effort to construct CI for C,
we further take the transformation:

W ∗ = V logU = ψ∗ log
C̃

C
,

where the pdf of W ∗ is

(2.38) hW ∗(w∗) =
n(n−1) (n−1)

Γ(n−1)

∫ ∞

0

exp (−n/t)
(t−1)

[
(t+w∗)−n −

(
t(w∗+1)

)−n]
dt ,

for w∗ > 0. Therefore, a 100(1− γ)% CI for C is calculated using the following:

(2.39)
(
C̃ exp

{
−κ2/ψ

∗}, C̃ exp
{
−κ1/ψ

∗}) .

κ1 and κ2 are calculated from
∫ κ1

0 hW ∗(w∗)dw∗ = γ/2 and
∫∞
κ2
hW ∗(w∗)dw∗ = γ/2.
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2.2. Posterior Predictive Sampling

This is the second method of sampling to draw synthetic data based on original data.
Under a Bayesian setting, the synthetic data z = (z1, ..., zn)> comes from the posterior
predictive distribution of θ given x. Here, we discuss the method of drawing inference on ψ

when C is known.

2.2.1. Inference on ψ when C is known

We utilize the fact that the posterior distribution of ψ given U is Gamma with parame-
ters (n+ c0, u+d) as given by [2]. Here, c0 > 0 and d > 0 are the hyper parameters obtained
using a Gamma prior with parameters c0 and d, and U =

∑n
i=1 log(Xi/C). Below we discuss

the procedure for posterior predictive sampling:

Step 1: Draw ψ∗ from the posterior distribution of ψ given u.

Step 2: Given value of ψ∗ in Step 1, draw z = z1, ..., zn as iid from the Pareto density
fθ(zi) = ψ∗Cψ

∗

zψ
∗+1

i

.

For the purpose of analysis based on z, we develop the joint pdf of z in Theorem 2.4.
In order to prove the theorem, the following three facts are used:

• zi |ψ∗, i= 1, ..., n are iid with each following Pareto distribution with parameters C
and ψ∗;

• ψ∗|u follows Gamma distribution with parameters (n+ c0, u+ d);

• U |ψ is Gamma distribution with parameters (n, ψ).

Theorem 2.4. The joint pdf of z is given by

fψ(z) =
ψn

Γn Γ(n+ c0)
(∏n

i=1 zi
)

×
∫ ∞

0

∫ ∞

0
ψ∗(2n+c0−1)

{
cn(∏n
i=1 zi

) e−(u+d)

}ψ∗
dψ∗

un−1 (u+ d)n+c0 e−uψ du ,(2.40)

where ψ > 0 and zi > C, i= 1, ..., n.

Proof: The above theorem can be proved by considering

fψ(z) =
∫ ∞

0

∫ ∞

0
f(z |ψ∗)×f(ψ∗|u)×f(u|ψ) dψ∗ du ,

where f denotes the corresponding pdfs as usual.
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Define ψ̃ =
n∑

log(Zi/C)
as an estimator of ψ and ψ̃|ψ∗ follows IG distribution with

parameters n and nψ∗. The expected value of ψ̃ is obtained as

E{ψ̃} = E
{
E{ψ̃|ψ∗}

}
= E

{
n

(n−1)
ψ∗
}

=
n

(n−1)
E

{
n+ c0
u+ d

}
=

n(n+ c0)ψn

(n−1) Γn

∫ ∞

0

un−1e−uψ

(u+ d)
du =

n(n+ c0)ψn

(n−1) Γn
M1(ψ, n, d) ,

where the term

M1(ψ, n, d) =
∫ ∞

0

un−1e−uψ

(u+ d)
du .

Further, the variance of ψ̃ is computed as follows:

V (ψ̃) = V
(
E{ψ̃|ψ∗}

)
+ E

{
V (ψ̃|ψ∗)

}
,

where

V
(
E{ψ̃|ψ∗}

)
=

n2 (n+ c0) (n+ c0 +1)ψn

(n−1)2 (n− 2) Γn

∫ ∞

0

un−1 exp(−uψ)
(u+ d)2

du

=
n2 (n+ c0) (n+ c0 +1)ψn

(n−1)2 (n− 2) Γn
M2(ψ, n, d) ,

with

M2(ψ, n, d) =
∫ ∞

0

un−1e−uψ

(u+ d)2
du

and

E
{
V (ψ̃|ψ∗)

}
=

n2 (n+ c0)ψn

(n−1)2 Γn

[
(n+ c0 +1)M2(ψ, n, d)−

(n+ c0)
Γn

ψnM2
1 (ψ, n, d)

]
.

Hence, we can express the variance of ψ̃ as

(2.41) V (ψ̃) =
n2 (n+ c0)ψn

(n−1)2 Γn

[
(n−1) (n+ c0 +1)

(n− 2)
M2(ψ, n, d)−

(n+ c0)
Γn

ψnM2
1 (ψ, n, d)

]
.

Shortest confidence interval for ψ

Applying the same concept used in Theorem 2.4 and considering ψ̃|ψ∗ follows IG dis-
tribution with parameters n and nψ∗, the pdf of ψ̃ is given by

(2.42) fψ(ψ̃) =
nn ψn Γ(2n+ c0)

(Γn)2 Γ(n+ c0) ψ̃n+1

∫ ∞

0

un−1e−uψ (u+ d)n+c0(
n/ψ̃+ u+ d

)2n+c0
du .
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For computational convenience, we consider d= 0 which leads to the prior density of the
parameter ψ to be a Jeffreys prior. However, the posterior density of ψ still follows a Gamma
distribution. For a detailed discussion, refer to Section 2.1 in [2]. Henceforth, we assign d= 0.

For ω > 0, considering the transformations t= u
[
n
ψ̃

+ u
]−1

and ω =
ψ̃

ψ
sequentially in (2.42),

we get the pdf

(2.43) fW (ω) =
nn Γ(2n+ c0)

(Γn)2 Γ(n+ c0)ωn+1

∫ 1

0

t2n+c0−1 exp
{
− 1
ω

[
n−t
1−t
]}

t−1
dt

independent of ψ. Hence, ω is a pivotal quantity and the shortest distance (1− γ) 100% CI
for ψ is

(2.44)
(
ψ̃ ω−1

2 , ψ̃ ω−1
1

)
,

where ω1 and ω2 are obtained by solving

ω2
1 fW (ω1)− ω2

2 fW (ω2) = 0 ,

FW (ω2)− FW (ω1)− (1− γ) = 0 ,(2.45)

and FW (ω) =
∫ ω
0 fW (u) du. The discussion on constructing the shortest CI can be found in

Section 2.1.1.

Remark: In practice, it is unrealistic to assume that the shape parameter ψ is known
and C is not known. Once we have data then the minimum value in the data is sufficient
for C. As per [2] the posterior distribution of C given the original data is a power function
distribution with two hyper parameters namely δ ≥ 0 and σ0 > 0. One of the parameters of
the posterior distribution of C depends on min{σ0, x(1)}. While computing the unconditional
pdf of C̃, an explicit expression could not be obtained since the integrals involved in the
derivation often have limits depending on the original data x. Hence we do not discuss this
case here. On the other hand, the case of joint posterior distribution when both parameters
are unknown, becomes extremely complex due to the same issue, and hence, it is not discussed
either in this paper.

3. SIMULATION STUDY AND RESULTS

To study the performance of the proposed estimation methods, we carry out an exten-
sive simulation study. For all scenarios, viz., only ψ unknown (Scenario 1), only C unknown
(Scenario 2), both C and ψ unknown (Scenario 3) in case of plug-in sampling, and only
ψ unknown in case of posterior predictive sampling (Scenario 4), few candidate true values of
C and ψ are chosen. True values of C are taken as 1 and 100, while true values of ψ are selected
to be 1.5 and 3. To study the effect of smaller and larger sample sizes on estimation, n= 50
and n = 100 are considered. Under these parameter settings, we examine the performance
and robustness of our estimation methods with respect to singly imputed synthetic data
based on one thousand Monte-Carlo simulation runs. Mathematica 12.2 and R-4.0.1 [24]
software packages are employed for coding.
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For these settings, parameter estimate (EST), empirical standard error (ESE), average
model based standard error (ASE), average bias of the estimator (BIAS), average root mean
squared error (RMSE), and coverage rate (CR) of 90% and 95% nominal level are provided
in Tables 1–6. Based on simulation results, estimates are found to be accurate with low bias
and low standard errors in all cases. As one would expect, increasing sample size results in
more precise estimates with improved coverage probabilities, and with noticeable reduction
in BIAS, ASE and RMSE. Estimates are less precise for estimating C when ψ is unknown,
and for estimating ψ when C is unknown than their corresponding known counterparts.

This can be attributed to the fact that estimating associated parameter instead of using their
known values introduces more variability to the data, resulting in less accuracy in estimation
of the primary parameter. ASE and RMSE obtained for estimating C are high when the
true value of C = 100 than when the true value of C = 1. A similar trend is observed for
estimating ψ as well; ASE and RMSE are high when true ψ = 3 as compared to the case
when true ψ = 1.5.

The coverage rates are mostly close to the nominal level throughout all scenarios, further
suggesting the estimation method is robust and the estimates are accurate. More specifically,
CRs corresponding to C behave quite well for both cases when ψ is known or unknown.
However, though rare, there are some instances of slight under-coverage for ψ when employing
our estimation method, specifically when C is unknown (see Table 4). A probable reason can
be the mathematical dependence of the estimator of ψ on C (known or unknown). But, we
would like emphasize that this under-coverage reduces as the sample size increases, validating
that for large enough sample size confidence intervals provided by our estimation method are
quite precise and reliable.

In Tables 5 and 6, we list the estimation results on ψ when C is known under posterior
predictive sampling. Throughout, we assign d = 0 that results in unbiased estimates of ψ.
Simulation results corresponding to c0 = 0 and c0 = 1 are presented in Tables 5 and 6,
respectively. The bias in the estimates are of the order of 10−2 and coverage rates are
close to the specified values of confidence level. Impact of increase in sample size can be seen
in the reduction of BIAS and RMSE.
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Table 1: EST, ESE, ASE, BIAS, RMSE and CR for C when ψ is known.

C ψ n 1− γ EST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.001 0.020 0.019 −0.001 0.020 0.893
0.95 1.000 0.019 0.019 0.000 0.019 0.948

100
0.90 0.999 0.008 0.009 0.001 0.009 0.911
0.95 1.001 0.009 0.009 −0.001 0.010 0.948

3.0

50
0.90 1.000 0.009 0.009 0.000 0.009 0.892
0.95 1.000 0.009 0.009 0.000 0.009 0.946

100
0.90 1.000 0.004 0.004 0.000 0.005 0.899
0.95 1.000 0.004 0.004 0.000 0.004 0.948

100

1.5

50
0.90 99.950 1.818 1.962 0.050 2.673 0.913
0.95 100.011 1.948 1.963 −0.011 2.764 0.948

100
0.90 99.950 0.917 0.961 0.050 1.326 0.904
0.95 100.011 0.982 0.962 −0.011 1.371 0.952

3.0

50
0.90 100.044 0.968 0.962 −0.044 1.363 0.892
0.95 99.992 0.941 0.961 0.008 1.345 0.949

100
0.90 100.020 0.501 0.476 −0.020 0.685 0.892
0.95 100.009 0.475 0.476 −0.009 0.670 0.951

Table 2: EST, ESE, ASE, BIAS, RMSE and CR for C when ψ is unknown.

C ψ n 1− γ EST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.001 0.018 0.019 0.001 0.026 0.909
0.95 1.002 0.019 0.019 0.002 0.027 0.954

100
0.90 1.000 0.010 0.009 0.000 0.014 0.897
0.95 1.000 0.009 0.009 0.000 0.013 0.951

3.0

50
0.90 1.000 0.009 0.009 0.000 0.013 0.902
0.95 1.000 0.009 0.009 0.000 0.013 0.951

100
0.90 1.000 0.005 0.005 0.000 0.007 0.904
0.95 1.000 0.005 0.005 0.000 0.007 0.952

100

1.5

50
0.90 100.096 1.963 1.888 0.096 2.753 0.904
0.95 100.026 1.886 1.883 0.026 2.692 0.951

100
0.90 100.034 0.958 0.943 0.034 1.350 0.910
0.95 100.008 0.960 0.938 0.008 1.349 0.950

3.0

50
0.90 100.010 0.900 0.922 0.010 1.301 0.910
0.95 100.078 0.956 0.919 0.079 1.341 0.949

100
0.90 100.011 0.486 0.468 0.011 0.678 0.901
0.95 100.015 0.480 0.467 0.015 0.673 0.947
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Table 3: EST, ESE, ASE, BIAS, RMSE and CR for ψ when C is known.

C ψ n 1− γ EST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.486 0.291 0.305 0.014 0.426 0.857
0.95 1.494 0.309 0.307 0.006 0.440 0.953

100
0.90 1.497 0.212 0.214 0.003 0.303 0.917
0.95 1.494 0.217 0.214 0.006 0.306 0.966

3.0

50
0.90 3.020 0.604 0.620 −0.020 0.874 0.860
0.95 3.009 0.610 0.617 −0.009 0.877 0.952

100
0.90 2.999 0.427 0.429 0.001 0.609 0.910
0.95 3.018 0.439 0.432 −0.018 0.619 0.965

100

1.5

50
0.90 1.488 0.285 0.305 0.012 0.422 0.868
0.95 1.482 0.298 0.304 0.018 0.430 0.953

100
0.90 1.498 0.215 0.215 0.002 0.306 0.910
0.95 1.497 0.227 0.214 0.003 0.314 0.963

3.0

50
0.90 2.988 0.573 0.613 0.012 0.847 0.864
0.95 3.011 0.596 0.618 −0.011 0.867 0.958

100
0.90 2.988 0.427 0.428 0.012 0.608 0.903
0.95 3.019 0.448 0.432 −0.019 0.626 0.968

Table 4: EST, ESE, ASE, BIAS, RMSE and CR for ψ when C is unknown.

C ψ n 1− γ EST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.494 0.307 0.310 0.006 0.440 0.852
0.95 1.506 0.313 0.312 −0.006 0.447 0.955

100
0.90 1.490 0.202 0.214 0.010 0.296 0.913
0.95 1.505 0.231 0.217 −0.005 0.318 0.952

3.0

50
0.90 2.997 0.587 0.621 0.003 0.863 0.859
0.95 3.027 0.656 0.628 −0.027 0.918 0.949

100
0.90 2.994 0.430 0.431 0.006 0.612 0.907
0.95 3.013 0.450 0.434 −0.013 0.628 0.959

100

1.5

50
0.90 1.500 0.289 0.311 0.000 0.429 0.860
0.95 1.498 0.306 0.311 0.002 0.441 0.953

100
0.90 1.508 0.216 0.217 −0.008 0.308 0.899
0.95 1.493 0.217 0.215 0.007 0.307 0.958

3.0

50
0.90 2.996 0.617 0.621 0.004 0.884 0.855
0.95 3.004 0.615 0.623 −0.004 0.884 0.951

100
0.90 2.983 0.421 0.429 0.017 0.605 0.900
0.95 2.986 0.446 0.430 0.014 0.623 0.956
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Table 5: Inference for ψ when C is known, under Bayesian predictive sampling
with hyper parametric values d = 0 and c0 = 0.

C ψ n 1− γ UEST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.540 0.379 0.409 0.040 0.345 0.905
0.95 1.544 0.394 0.410 0.044 0.359 0.947

100
0.90 1.513 0.266 0.273 0.013 0.152 0.895
0.95 1.521 0.265 0.274 0.021 0.153 0.952

3.0

50
0.90 3.086 0.794 0.820 0.086 1.445 0.908
0.95 3.048 0.755 0.810 0.048 1.356 0.959

100
0.90 3.000 0.515 0.541 0.000 0.585 0.907
0.95 3.035 0.522 0.547 0.035 0.601 0.963

100

1.5

50
0.90 1.554 0.385 0.413 0.054 0.355 0.926
0.95 1.549 0.401 0.411 0.049 0.367 0.946

100
0.90 1.513 0.257 0.273 0.013 0.147 0.908
0.95 1.494 0.261 0.269 −0.006 0.148 0.951

3.0

50
0.90 3.061 0.807 0.813 0.061 1.368 0.920
0.95 3.116 0.809 0.827 0.116 1.441 0.955

100
0.90 3.053 0.546 0.550 0.053 0.646 0.891
0.95 2.997 0.537 0.540 −0.003 0.593 0.951

Table 6: Inference for ψ when C is known, under Bayesian predictive sampling
with hyper parametric values d = 0 and c0 = 1.

C ψ n 1− γ UEST ESE ASE BIAS RMSE CR

1

1.5

50
0.90 1.535 0.367 0.408 0.035 0.334 0.918
0.95 1.543 0.387 0.410 0.043 0.353 0.953

100
0.90 1.514 0.267 0.273 0.014 0.153 0.909
0.95 1.524 0.264 0.275 0.024 0.153 0.955

3.0

50
0.90 3.062 0.755 0.813 0.062 1.365 0.904
0.95 3.060 0.766 0.813 0.060 1.382 0.950

100
0.90 3.032 0.522 0.547 0.032 0.601 0.904
0.95 3.021 0.531 0.545 0.021 0.607 0.949

100

1.5

50
0.90 1.521 0.369 0.404 0.021 0.331 0.921
0.95 1.537 0.379 0.408 0.037 0.344 0.960

100
0.90 1.521 0.268 0.274 0.021 0.154 0.904
0.95 1.518 0.278 0.274 0.018 0.160 0.953

3.0

50
0.90 3.065 0.775 0.814 0.065 1.368 0.909
0.95 3.055 0.774 0.811 0.055 1.449 0.947

100
0.90 3.046 0.539 0.549 0.046 0.647 0.898
0.95 3.013 0.538 0.543 0.013 0.601 0.948
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4. CONCLUDING REMARKS

In this paper, we have derived likelihood based methods of inference for synthetic data
when the original data comes from a two parameter Pareto model. To this end, synthetic
data were generated by two different methods, viz., plug-in sampling and posterior predictive
sampling. For the plug-in sampling method, we have developed unbiased estimators for the
parameters, and obtained the expressions of the corresponding variances and shortest distance
CIs under three possible scenarios (inference on ψ when C is known, inference on C when
ψ is known and inference on θ when both parameters are unknown). On the other hand, under
posterior predictive sampling, inference has been drawn only for the shape parameter ψ
when C is known. The methods have been discussed based on a single synthetic data set.

Results from the simulation study have shown that the plug-in sampling exhibits less
bias, ASE and RMSE than posterior predictive sampling. A similar observation has been
reported by [15] for a synthetic data from exponential distribution.

The developed estimators are unbiased in nature, and have been developed based on
sufficient statistics. Exact shortest distance confidence intervals for parameters have been
constructed for all methods of sampling, except for C when ψ is unknown in plug-in sampling.
The primary strength of these methods is that they are based on a single synthetic data
set, which is advantageous when release of multiple data sets is not allowed due to privacy
concerns.

Despite observing actual microlevel data, the methodologies developed in this paper
would allow researchers and policy makers to gain insights into the extent of financial burden
tax payers face by filing income tax, or distribution of income or wealth across various strata
of the society. The mathematical expressions provided in the paper would enable them to
estimate the key parameters of the distribution relatively accurately, thereby, necessitating
appropriate economic policy changes, or identifying gaps in a financial program or strategy.
Computations of confidence intervals may require evaluating implicit integrals or solving non-
linear simultaneous equations. However, these can be carried out easily by any established
statistical software. It is recommended that users should carry out proper hypothesis test to
verify whether a Pareto model fits data for a particular location or period. For researchers in
government agencies, who have the access to actual data, could verify the precision of our es-
timates, and assess merits in our techniques. Future work may include developing estimation
procedures in case of posterior predictive sampling with different informative priors.
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